

ARDEN CLUBS ON BEHALF OF THE HILLS CLUB

Preliminary Site Investigation with Limited Sampling

The Hills Club, Baulkham Hills NSW

E24782.E01_Rev1 9 October 2020

Document Control

Report Title:	Preliminary Site Investigation with Limited Sampling

Report No: E24782.E01_Rev1

Сс	ppies	Recipient
1	Soft Copy (PDF – Secured, issued by email)	Mr Tony Pizzolato Arden Clubs on behalf of The Hills Club Unit 3.02, 184 Bourke Rd, Alexandria NSW 2015
2	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, Pyrmont NSW 2009

Author

Ab

Technical Reviewer

LAN YE Sari Eru Environmental Engineer Senior Environmental Consultant		sultant	
Revision	Details	Date	Amended By
0	Original - DRAFT	25 September 2020	-
1	Original	9 October 2020	BA

© 2020 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

EX	ECUI		IMARY	I
1.	INTI	RODUCT	ION	1
	1.1	Backgro	ound and Purpose	1
	1.2	Propose	ed Development	1
	1.3	Regulat	ory Framework	2
	1.4	Project	Objectives	2
	1.5	Scope c	of Works	2
		1.5.1	Desktop Study	2
			Limited Soil Sampling	3
		1.5.3	Data Analysis and Reporting	3
2.	SITE		IPTION	4
	2.1	Property	/ Identification, Location, and Physical Setting	4
	2.2	Local La	and Use	4
	2.3	Regiona	al Setting	5
	2.4	Ground	water Bore Records and Local Groundwater Use	6
	2.5	Site Wa	Ikover Inspection	6
3.	PRE	EVIOUS I	NVESTIGATIONS	7
4.	SITE	E HISTOI	RY AND SEARCHES	8
	4.1	Site Lar	d Titles Information / Historical Aerial Review	8
	4.2	Council	Information	9
	4.3	SafeWo	rk NSW Dangerous Goods Register Records	10
	4.4	EPA On	line Records	10
		4.4.1 (1997)	Contaminated Land - Record of Notices under Section 58 of CLM Act 10	
		4.4.2		11
		4.4.3	POEO Public Register	11
5.	SITE		ACTERISATION	12
	5.1	Historica	al Site Use and Generic Risks	12
	5.2	PFAS A	ssessment	12
	5.3	Emergir	ng Chemicals	13
	5.4	Concep	tual Site Model	13
		5.4.1	Overview	13
		5.4.2	Potential Contamination Sources	13
		5.4.3 5.4.4	Contaminants of Potential Concern Potential Pollutant Linkages	14 14
6.	SAN	IPLING	ANALYTICAL, AND QUALITY PLAN (SAQP)	16
	6.1	-	iality Objectives (DQO)	16

	6.2 Data Quality Indicators6.3 Soil Assessment Criteria		20 20
	6.4	Groundwater Assessment Criteria	21
7.	ASS 7.1 7.2	SESSMENT METHODOLOGY Sampling Rationale Groundwater Investigation	23 23 24
8.	DAT 8.1	CA QUALITY ASSESSMENT Quality Overview	27 27
9.	RES 9.1	SULTS Soil Investigation Results 9.1.1 Site Geology and Subsurface Conditions 9.1.2 Field Observations	28 28 28 28 28
	9.2	Groundwater Investigation Results 9.2.1 Monitoring Well Construction 9.2.2 Field Observations and Water Test Results	28 28 29
	9.3	Laboratory Analytical Results 9.3.1 Soil Analytical Results 9.3.2 Groundwater Analytical Results	29 29 31
10.	10.1	E CHARACTERISATION Soil Characterisation Groundwater Characterisations	33 33 33
11.	CON	NCLUSIONS	35
12.	REC	COMMENDATIONS	37
13.	STA	TEMENT OF LIMITATIONS	38
RE	FERE	ENCES	39
ABI	BREV	VIATIONS	40

Schedule of Tables

Table 2-1	Site Identification	4
Table 2-2	Local Land Use	5
Table 2-3	Regional Setting	5
Table 2-4	Groundwater Bores	6
Table 4-1	Summary of Owner History	8
Table 4-2	Summary of Aerial Photograph History	9
Table 4-3	Summary of Council Documents	9
Table 5-1	Assessment of Potential Contamination Risk	12
Table 5-2	PFAS Decision Tree	12
Table 5-3	Emerging or Controlled Chemicals	13

Table 5-4	Conceptual Site Model	15
Table 6-1	Summary of Project Data Quality Objectives	17
Table 6-2	Data Quality Indicators	20
Table 6-3	Adopted Investigation Levels for Soil	20
Table 6-4	Adopted Investigation Levels for Groundwater	22
Table 7-1	Summary of Soil Investigation Methodology	23
Table 7-2	Summary of Groundwater Investigation Methodology	24
Table 9-1	Generalised Subsurface Profile	28
Table 9-2	Monitoring Well Construction Details	29
Table 9-3	Groundwater Field Data	29
Table 9-4	Summary of Soil Analytical Results	30
Table 9-5	Summary of Groundwater Analytical Results	31

Appendices

APPENDIX A - FIGURES

- A.1 Site Location Plan
- A.2 Site Layout Plan
- **APPENDIX B TABLES**

APPENDIX C – PROPOSED DEVELOPMENT PLANS

- **APPENDIX D SITE PHOTOGRAPH**
- **APPENDIX E GROUNDWATER BORE SEARCH**
- **APPENDIX F HISTORICAL PROPERTIES TITLES**
- APPENDIX G SAFEWORK NSW RECORD
- **APPENDIX H BOREHOLE LOGS**
- APPENDIX I FIELD DATA SHEETS
- APPENDIX J CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS
- APPENDIX K LABORATORY ANALYTICAL REPORTS
- APPENDIX L QA/QC ASSESSMENT
- APPENDIX M LABORATORY QA/AC POLICIES AND DQOS

Executive Summary

Background and Objectives

Mr Tony Pizzolato of Arden Clubs on behalf of The Hills Club engaged EI Australia (EI) to conduct a Preliminary Site Investigation with Limited Sampling (PSI) for site characterisation purposes of the land parcel referred to as The Hills Club, Baulkham Hills NSW (herein referred to as the 'the site').

With a street address of 6-18 Jenner Street, Baulkham Hills, the site is located approximately 23 km north west of the Sydney Central Business District (CBD), within the Local Government Area of The Hills Shire Council (see **Figure 1**). The site is covers an area of approximately 13,500m² and is currently occupied by an outdoor bowls facility, comprising a clubhouse, three bowling greens and a car park, as depicted in the site plan presented as **Figure 2**. The client wishes to redevelop the site, and preparation of this PSI with limited sampling was required to provide a preliminary assessment of the contamination status of the land, and assist the client in meeting their obligations with regards to the *Environmental Planning and Assessment Act 1979* and the requirements of *State Environmental Planning Policy No. 55: Remediation of Land*.

Scope of Works

The works were completed in accordance with EI fee proposal P17051.5 (dated 27 July 2020), which included:

- Completion of a desktop study, including a review of relevant hydrogeological and soil landscape maps for the project area, search of historical aerial photographs made available for the site, searches of NSW WorkCover, Council Records and EPA Contaminated land records and a land titles search to determine the site history; and
- A detailed site walkover inspection;
- Preliminary intrusive investigations utilising 9 sampling locations, in conjunction with a geotechnical assessment and multiple level soil sampling within fill and natural soils;
- The installation of 3 groundwater monitoring bores drilled to a maximum depth of 9m and one round of groundwater sampling to investigate the potential for groundwater contamination, and migration of contaminants off-site;
- Laboratory analysis of the selected soil and groundwater samples for the identified contaminants of concern; and
- Data interpretation and reporting.

Proposed Development

Redevelopment of the site was proposed, for the construction of four, mixed commercial and residential structures overlying a common, multi-level basement car-park. Soil within the southern part of the site will be retained, for the construction of two bowling greens and associated landscaping.

Key Findings

- The historic use of the site was primarily residential, and owned by private persons from at least 1940, then in 1951 the site was developed into the current bowls club, which remains in use today.
- The Hills Shire Council records and searches of notices for contaminated land indicated that the historic use of the site did not include significant industrial and/or manufacturing activities, storage of chemicals or reportable contamination incidents for the site. Furthermore, no records or indications of underground storage tanks were revealed, and were not expected to be present within the site;
- A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 identified a Shell Coles Express Service Station located 110m to the west, being up hydraulic gradient from the subject site;.
- Soil sampling and analysis was conducted at nine (9) borehole locations (BH1M to BH9) within the accessible area of the site. The intrusive investigation was completed in conjunction with a geotechnical investigation, and revealed the presence of bitumen and ash in fill sampled as BH1M and BH6;
- The sub-surface layers of the site comprised fill materials consisting of predominantly silty sand, overlying shale bedrock at depth;
- Soil samples reported Carcinogenic PAHs within fill sampled at BH1M. The concentrations
 reported exceeded the human health criteria, however were likely to be a result of the
 asphalt inclusions, and being an inert material, would therefore pose a low risk to human
 health receptors of the site;
- Asbestos containing material (ACM) was detected as 'fibrous rope material' within fill sampled at BH7, and additional characterisation of the asbestos impacts would be necessary, on completion of site demolition so as to gain access to the site surface;
- Sample locations BH1M and BH7 were located within the basement footprint, to be excavated for basement construction which would remove the reported exceedances;
- Groundwater was encountered at depths between 3.14 5.25 mBGL, and was found to migrate in a north-easterly direction, towards Stevenson Creek. Variations in standing water levels were observed, and may be influenced by aquifer confinement;
- Groundwater samples reported concentrations of the heavy metals, chromium, copper, lead, nickel and zinc exceeding the ecological criteria, however were considered to be typical of urban groundwater environments, and did not pose a risk to the site's receptors; and
- Low concentrations of THR F1 and F2, Chloroform, 1,3,5-trimethylbenzene and 1,2,4trimethylbenzene were reported in hydraulically down-gradient monitoring wells BH2M and BH4M. The detections of these contaminants may be residual as a result of borehole drilling methods (rock coring) Additional development and sampling of the wells is required to confirm these results.

Conclusions

In view of the above findings and subject to the statement of limitations (**Section 13**), EI have identified a moderate and potentially unacceptable risk posed by contamination to receptors of the proposed development. As such, additional investigation, such as the completion of a detailed site investigation (DSI) will be required to adequately characterise site soils, and provide recommendations of any remediation required (if necessary) to make the site suitable for the proposed mixed use as a residential (minimal access to soil) and recreational bowling facility.

Recommendations

El consider that the site can be made suitable for the proposed development, subject to the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures prior to demolition works;
- A Detailed Site Investigation (DSI) will be required after site building demolition to gain access to the site surface. The DSI should include:
 - A visual inspection of the entire site surface for asbestos;
 - Additional sampling of soil at 14 additional locations to achieve the minimum sampling requirements for a 1.35 hectare site, as required by DECC (1995) Sample Design Guidelines;
 - Sampling locations should assess fill and natural soils at each location, and the analytical results may be utilised for the classification of surplus material designated for offsite disposal;
 - At least three sample locations should be positioned at proposed retained soil area at southern portion of the site to assess the ecological suitability of this material; and
 - An additional round of groundwater monitoring (GME) utilising the 3 existing wells, including the collection of survey data to determine flow direction.
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as virgin material (VENM).

1. Introduction

1.1 Background and Purpose

Mr Tony Pizzolato of Arden Clubs on behalf of The Hills Club engaged EI Australia (EI) to conduct a Preliminary Site Investigation with Limited Sampling (PSI) for site characterisation purposes of the land parcel referred to as The Hills Club, Baulkham Hills NSW. (herein referred to as the 'the site').

With a street address of 6-18 Jenner Street, Baulkham Hills, the site is located approximately 23 km north west of the Sydney Central Business District (CBD), within the Local Government Area of The Hills Shire Council (see **Figure 1**). The site is covers an area of approximately 1.35 hectares (13,500m²) and is currently occupied by an outdoor bowls facility, comprising a clubhouse, three bowling greens and a car park, as depicted in the site plan presented as **Figure 2**.

1.2 Proposed Development

Architectural drawings (attached in Appendix C) were provided to EI as:

 ALTIS Architecture (2020), Project No. 2817.01, Drawing No. SK0010, SK0001, SK0100, SK1101-SK1112, SK2100, SK2101, SK3001, SK3002, SK8000 and SK9002, Issue 1, dated 7 July 2020;

The plans indicate the development will involve the demolition of all existing site structures, followed by bulk excavation to depths of about 13.5m below ground level (mBGL) for the a common three-level basement, and construction of four, multi-storey mixed-use buildings.

The Hills Club propose a Planning Proposal to redevelop their site in Baulkham Hills. The proposal seeks to retain the current RE2 Private Recreation zone under The Hills Local Environmental Plan 2019 and include new uses on the site to support The Club and related activities. The additional uses include:

- A new Community Club with a diverse range of food and beverage offerings, members lounge, restaurant, cafe and dining facilities, multi-functional recreation areas, open air bowling green and an enclosed world championship bowling green with associated facilities, 200 car spaces and loading dock;
- Approximately 275 residential apartments across 4 buildings comprising residential and seniors housing;
- Commercial, retail and other ancillary uses;
- Site through link;
- Basement residential carparking for approximately 500 cars;
- Public domain upgrades; and
- Signage .

With regards to the National Environmental Protection Measure (Assessment of Site Contamination) 1999, Amendment 2013 (NEPC, 2013) the proposed land use represents a commercial / industrial land use scenario with relation to health screening levels for users of the proposed basement, with a residential (minimal access to soil) land use scenario for the above ground soils, overlying the constructed basement. An area of deep soil will be retained within

the southern part of the site, to the east of the current bowling green. This area will be retained for the construction of two bowling green's and represents a recreational land use scenario.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this report:

- The Environmental Planning and Assessment Act 1979 (The EP&A Act);
- The Contaminated Land Management Act 1997 (the CLM Act)
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- EPA (1995) Sampling Design Guidelines;
- EPA (2020) *Guidelines for Consultants Reporting on Contaminated Land*, NSW Environmental Protection Authority;
- NEPC (2013) Schedules B(1) Guideline on Investigation Levels for Soil and Groundwater and B(2) Guideline on Site Characterisation; and
- State Environment Protection Policy No 55 Remediation of Land (SEPP 55);

1.4 Project Objectives

The primary objectives of this PSI is to provide a preliminary assessment of the environmental conditions of the site by appraising the potential for site contamination on the basis of field observations, historical land uses, anecdotal, and documentary evidence, accompanied by limited sampling of site soils and groundwater.

The PSI was required to assist the client in meeting their obligations with regards to the EP&A Act, and the requirements of SEPP 55, by assessing the site in accordance with the guidelines in force from time to time under Section 105 of the CLM Act (1997).

1.5 Scope of Works

The works were completed in accordance with EI fee proposal P17051.5 (dated 27 July 2020), which included:

1.5.1 Desktop Study

- a review of relevant hydrogeological and soil landscape maps for the project area;
- a detailed site walkover inspection;
- search of historical aerial photographs archived at the NSW Land and Property Information in order to review previous site use and the historical sequence of land development in the neighbouring area;
- search of NSW WorkCover (SafeWork NSW) records for information relating to possible underground tank approvals and locations;
- site history survey involving a detailed search of Council for information relating to operational site history;
- a land titles search, also conducted through NSW Land and Property Information (nine separate title lots);

- review of existing underground services on site;
- search through the OEH Land Information records to confirm that there are no statutory notices current on the site under the Unhealthy Building Land Act (1990) or the Contaminated Land Management Act (1997);

1.5.2 Limited Soil Sampling

- construction of test boreholes at 9 locations distributed across accessible areas of the site (in conjunction with the geotechnical assessment);
- construction of 3 groundwater monitoring bores drilled to a maximum depth of 9m (or refusal) both up gradient and downgradient of the proposed redevelopment area. Groundwater monitoring bores will be constructed to standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants offsite;
- multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the three newly constructed groundwater monitoring bores;
- laboratory analysis of selected soil samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program.

1.5.3 Data Analysis and Reporting

Following the desktop assessment, site inspection and limited sampling, this PSI report was prepared generally in accordance with the EPA (2020) *Guidelines for Consultants Reporting on Contaminated Land.* This report documents the site characterisation assessment and presents the findings with respect to potential risks to human health, the environment and the aesthetic enjoyment of the land, and provides recommendations that may be necessary to make the land suitable for the proposed development.

2. Site Description

2.1 Property Identification, Location, and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Table 2-1 Site Identification

Attribute	Description
Street Address	The Hills Club, Baulkham Hills NSW
	6-18 Jenner Street, Baulkham Hills NSW 2153
Lot and Deposited Plan	Lot 39 to Lot 45, Section 2 in DP2489;
(DP)	Lot Z in DP400638; and
	Lot 4 in DP1108855.
	(Source: http://maps.six.nsw.gov.au)
Location Description	Approx. 23km north-west of Sydney CBD, bound by residential apartments to the north, George Suttor Reserve and apartment to the south, Old Northern Road to the west and Jenner Street to the east.
Site Coordinates	North-western corner of site (GDA94-MGA56):
	• Easting: 314131.025
	• Northing: 6262694.12
	(Source: http://maps.six.nsw.gov.au)
Site Area	Approx. 13,500 m ² (1.35 hectares)
State Survey Marks	Two State Survey (SS) marks are situated in close proximity to the site. SS88431 (10m southeast) on Jenner Street and SS57509 (31m southeast) on James Street.
	One permanent Mark PM55875D (91m northwest) on the Old Northern Road.
	(Source: http://maps.six.nsw.gov.au).
Local Government Authority	The Hills Shire Council
Parish	Castle Hill
County	Cumberland
Current Zoning	RE1: Public Recreational
	B2: Local Centre
	RE2: Private Recreation
	(The Hills Local Environmental Plan 2019)

2.2 Local Land Use

The site is situated within Baulkham Hills local town centre area. The local sensitive receptors within close proximity to the site are also identified in **Table 2-2**.

Table 2-2 Local Land Use

Direction	Land Use Description	Human and/or ecological receptors (distance
North	Apartments	Residual occupants (adjacent)
South	George Suttor Reserve and apartment	George Suttor Reserve (adjacent) Residual occupants (adjacent)
East	Jenner Street, followed by residential properties	Residual occupants (<20m) O'Regan Reserve (200m)
West	Old Northern Road, followed by commercial properties	Store staff and customers (<20m) Baulkham Hills Shopping Centre (<30m) Harry Carr Reserve (<600m)

2.3 Regional Setting

Local topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Table 2-3 Regional Setting

Attribute	Description
Topography	The site is located on the east side of the Old Northern Road within gently (0° to 10°), north easterly dipping topography with site levels varying from approximately R.L. 104 m above Australian Height Datum (mAHD) at the southern portion of the site to R.L. 94 mAHD at the north eastern site corner.
Site Drainage	Consistent with the general slope of the site, stormwater is assumed to flow south towards Norwest Lake via drainage systems discharging to various stormwater easements and the municipal stormwater system.
Regional Geology	The Geological Map of Penrith (Geological Series Sheet 9030, Scale 1:100,000, Edition 1, 1991) published by the Department of Minerals and Energy indicates the residual soils within the site to be underlain by Ashfield Shale, a formation of the Wianamatta Group, comprising dark grey to black claystone, siltstone and fine sandstone-siltstone laminite.
Soil Landscapes	The Soil Landscape Map of Penrith (soil Landscape Series Sheet 9030, Scale 1:100,000, 1989), prepared by the Soil Conservation Service of NSW, indicates that the site is located within the Blacktown landscape area and typically consists of highly plastic and relatively impermeable residual soil.
Acid Sulfate Soil (ASS) Risk	With reference to the Prospect Parramatta Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of No Known Occurrence. In such cases, there is a low probability of occurrence of acid sulphate soil (ASS) material within the soil profile and "land management is not likely to be affected by ASSs.
Nearest Surface Water Feature	Stevenson Creek is located approximate 550m to the southwest of the site, being a tributary of Parramatta River and is considered to be a marine water ecosystem for impact assessment purposes.
Anticipated Groundwater Flow Direction	Southeast towards Stevenson Creek.

2.4 Groundwater Bore Records and Local Groundwater Use

An online search of registered groundwater bores was conducted by EI on 3 September 2020 through the NSW Office of Natural Resources (Ref.

<u>http://allwaterdata.water.nsw.gov.au/water.stm</u>). El identified six registered bores within 500 m of the site of the site. A bore location plan and detailed information regarding the listed bores is attached in **Appendix E**. The five closest registered bores within a 500m radius of the site are presented on **Table 2-4** below.

Bore No.	Date Drilled	Drilled Depth (mBGL)	SWL*/Salinity/Yield	Bore Purpose
GW018457	01/10/1959	52.40	1.2 / Salty / 0.32	Waste Disposal
GW019461	01/10/1959	52.40	1.2 / Salty / 10.10	Waste Disposal
GW112988	18/10/2002	7.91	- / - / -	Monitoring
GW112989	18/02/2002	6.89	- / - / -	Monitoring
GW112990	18/10/2002	9.91	-/-/-	Monitoring

Table 2-4 Groundwater Bores

Notes:

- Data not recorded;

* SWL - Standing water level measured in metres Below Ground Level (mBGL),

Salinity - units unspecified,

Yield – measured in L/s.

2.5 Site Walkover Inspection

Site observations were recorded during a site walkover inspection of the site on 3 August 2020. A summary of site observations is detailed below and site photographs taken during the inspection are present in **Appendix D**. Site observations indicated that:

- The site is used for commercial purposes (The Hills Club) and is currently occupied by a commercial building with bitumen and concrete carpark, which cover the southeast portion of the site and three bowling greens, which cover the north and west portion of the site;
- The building and car park appear to be in moderate to good conditions, with very minimal staining, paint flaking and cracking of the building walls;
- No suspicious odours or evidence of gross contamination were observed in any part of the site; and
- No evidence indicative of underground storage tanks (USTs) or an underground petroleum storage system (UPSS) was observed on any part of the site.

3. Previous Investigations

El was unaware of any previous environmental investigation having been completed at the site; however, this PSI was completed concurrently with a geotechnical assessment, recorded under the following report:

 El Australia (2020) Geotechnical Investigation; The Hills Club, Baulkham Hills (El Report E24782.G03, dated 1 September 2020).

Relevant findings from this report were as follows:

- Based on the logs for four boreholes (BH1M to BH4M) drilled at the site, subsurface conditions were generalised as (excluding and surface paving):
 - Topsoil fill (0.15 4.5m), comprised of silty sand, gravelly sand, and silty clay fill with traces of rootlets; overlying
 - Shale (from 0.2 4.5m BGL onwards), very low to very high strength (increasing with depth).
- The standing water level (SWL) in the monitoring wells installed ranging from 3.14m BGL to 5.25m BGL, which equated to 93.25m AHD to 99.96m AHD.

Laboratory analytical testing of representative samples indicated that site fill and shale were acidic (pH: 4.3-5.1), non-saline (EC: 28-80 μ S/cm) and non-aggressive to concrete and steel structures.

On review of the groundwater data, it was found that the variation in SWL, the presence of thick, impervious clays and the presence of a fractured rock environment may indicate aquifer confinement, and may not be representative of true groundwater ingress within the site.

4. Site History and Searches

4.1 Site Land Titles Information / Historical Aerial Review

A historical land titles search was conducted through InfoTrack. Copies of relevant documents resulting from this search are presented in **Appendix F**. A summary of all the previous and current registered proprietors (**Table 4-1**), along with information obtained from the available historical aerial photographs, in relation to past potential land uses (**Table 4-2**). The historical aerial photographs reviewed as part of this PSI included:

- 1951: May 1951, RUN 7, NSW 472-80 Department of Lands NSW;
- 1961: RUN 27W, NSW 1049-5023 Lands Photo;
- 1982: 10 August 1982, RUN 18, NSW 3242-124 Lands Photo;
- 1991: 20 September 1991, RUN 7, NSW 4038 Surveyor General's Department NSW;
- 2002: 16 March 2002, Run 7, NSW 4724 Land and Property Information NSW;
- 2015: Google Earth; and
- 2018: Google Earth.

Table 4-1 Summary of Owner History

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	
Lots 39 to 45 Section 2 D.P. 248	9	
1924 to 1971	Private owners	
1971 to date	# The Hills District Bowling Club Limited	
Lot Z D.P. 400638		
1924 to 1996 Private owners		
1996 to date	# The Hills District Bowling Club Limited	
Lot 4 D.P. 1108855		
1903 to 1934	Minister for Public Works	
1903 to 1934	The Railway Commissioners of New South Wales	
	Now	
	Commissioner for Railways	
23.10.1934	Surrendered to the Crown	
02.11.1934	Reserved from Sale or Lease	
02.11.1934	Reserve R 64890 for Public Recreation	
1964 to date	# The Hills District Bowling Club Limited	

Denotes Current Registered Proprietor

Aerial Photograph	Site description based on historical aerial photographs	Land use
1951	The western portion of the site appears to be occupied by two bowling greens. The eastern portion of the site was vacant. Surrounding lands appear to be low density residential with orchard and market garden activities.	Commercia
1961	An additional bowling green and a building appear at western portion of the site. Surrounding areas have been redeveloped into low density suburban residential properties.	Commercia
1982	The site appears unchanged. Baulkham Hills Shopping Centre appears to the northwest of the site.	Commercia
1991	The site appears unchanged. The properties to the west of the site appear to be developed into shops.	Commercia
2002	The site generally remains unchanged except an extension was established to the existing building.	Commercia
2015	The site appears unchanged from the previous aerial photograph.	Commercia
2018	The site appears unchanged from the previous aerial photograph.	Commercia

Table 4-2	Summary	of	Aerial Photograph History
	Outification	U 1	Actial i notograph instory

In summary, land titles records and historic aerial photography indicate that the site was generally vacant, acquired for rail purposes (not used) then owned by individual proprietors. Site development into the current bowls club occurred from at least 1951 to the current date.

4.2 Council Information

A summary of relevant documents reviewed (i.e. development applications) based on the council search results is presented in **Table 4-3**. The original copy of the documents can be reviewed at the local council office.

Period / Year	Series (Council Reference)	Description
25/03/2002	3496/2002/MC	A Fire Hose Pump Station and Window Replacement to Northern Side of Building
25/03/2002	3083/2002/NC	An addition of fire hose pump station and replacement of windows on the northern side of building.
19/06/2002	4566/2002/HD	Installation of an illuminated club sign
29/07/2002	340/2003/NC	Installation of an illuminated sign
26/03/2003	3120/2003/HB	Alteration of trading times
10/05/2004	2974/2004/LC	Two Rainwater Tanks
28/10/2005	865/2006/HB	Construction of a smokers deck with sails at Baulkham Hills Bowling Club

 Table 4-3
 Summary of Council Documents

Period / Year	Series (Council Reference)	Description
30/11/2005	1093/2006/HA	Upgrade of Exitsing Signage
13/01/2006	1207/2006/PC	Construction of a smokers deck with sails at Baulkham Hills Bowling Club
21/06/2006	1093/2006/HA/A	Section 96(2) Modification to upgrade of existing signage - The Hills District Bowling Club Ltd
6/12/2006	1121/2007/HD	A Smokers Balcony within Existing Roof Line - Hills Bowling Club
6/12/2006	935/2007/NC	A Smokers Balcony within Existing Roof Line
29/05/2008	1949/2008/HB	Alterations and additions for an outdoor area for the Hills District Bowling Club
18/08/2008	194/2009/PC	Alterations and additions for an outdoor area for the Hills District Bowling Club
9/07/2009	78/2010/HD	A viewing deck for The Hills District Bowling Club
22/07/2009	87/2010/NC	A viewing deck for The Hills District Bowling Club
6/12/2012	644/2013/HA	Advertising Signage (Illuminated)
22/02/2013	952/2013/PC	Advertising Signage (Illuminated)
19/12/2014	848/2015/HA	Proposed Extension of the Carpark
5/06/2015	848/2015/HA/A	Section 96 (1A) Modification to an Approved Carpark Extension
12/01/2016	970/2016/PC	Proposed Extension of the Carpark

In Summary, no evidence was found regarding any previous manufacturing activities, on-site storage of chemicals, and site contamination related incidents.

4.3 SafeWork NSW Dangerous Goods Register Records

A search of SafeWork NSW records did not identify records pertaining to dangerous goods or UPSS for the site. Correspondence from SafeWork NSW is presented in **Appendix G**.

4.4 EPA Online Records

4.4.1 Contaminated Land - Record of Notices under Section 58 of CLM Act (1997)

An on-line search of the contaminated land public record of EPA Notices was conducted on 3 September 2020. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Notices available to the public under Section 58 of the CLM Act;
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked;
- Site audit statements provided to the NSW EPA under section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and

 Actions taken by NSW EPA under section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (EHC Act).

The search confirmed that the site known as The Hills Club, Baulkham Hills NSW and surrounding lands within close proximity (within 250 m) were not subject to any regulatory notices relevant to the above legislation.

4.4.2 List of NSW contaminated sites notified to EPA

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was conducted on 3 September 2020. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the NSW EPA. The site has not been notified as contaminated to the EPA. A Shell Coles Express Service Station (110m to the west of the site) was on the list, and was located up hydraulic gradient.

4.4.3 POEO Public Register

A search of the Protection of the Environment Operations (POEO) Act public register was conducted on 3 September 2020. The public register contains records related to environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes. The search did not identify any record for the site or sites in proximity (\leq 500 m).

5. Site Characterisation

5.1 Historical Site Use and Generic Risks

Based on the historical information available, the site was used for bowling club (Section 4). The assessment of these risks in relation to this site is outlined in **Table 5-1**.

Table 5-1 Assessment of Potential Contamination Risk

Potential Sources	Impacted Media	Potential Contaminants of Concern	Likelihood for Contamination
Importation of fill of unknown origin and quality placed at the site	Soil	HM, TRH, PAH, BTEX, OC/OP Pesticides, PCB and asbestos	Low to medium Filling materials may have been used for levelling purposes during the construction of bowling greens, club building and car park.

Note 1 HM – Heavy Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc) unless otherwise indicated, TRH – Total Recoverable Hydrocarbons, PAH – Polycyclic Aromatic Hydrocarbons, BTEX – Benzene, Toluene, Ethylene and Xylene, OC/OP pesticides - Organochlorine and Organophosphorus Pesticides, PCB - Poly-chlorinated Biphenyls, VOC –Volatile Organic Compounds.

5.2 PFAS Assessment

EPA (2017) requires that PFAS is considered in assessing contamination. EI use the following decision tree (**Table 5-2**) based on EnRisk (2016) for prioritising the potential for PFAS to be present on site and whether PFAS sampling of soil and groundwater is required. Based on the findings presented in Table 5-2, sampling of PFAS was not necessary and the contaminant was not of concern for the current site.

Table 5-2	PFAS	Decision	Tree
-----------	------	----------	------

Probability	Justification
Low	The site has being used as a bowling club.
Low	Fire and Rescue NSW Baulkham Hills Fire Station is located approximate 1.7 km to the west of the site. The risk of migration of PFAS contamination to the site is low due to the distance to the site. A Fire Hose Pump Station was installed to the northern side of the club building. However there was no evidence shows that the station was used due to fire on site in the council records.
Low	The site has being used as bowling club
Low	PFAS contamination not expected to be associated with the specific land uses of the site.
	Low Low Low

Note 1 Runoff from fire training areas may impact surface water, sediment and groundwater.

Note 2 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of nonstick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (<u>https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas</u>)

Note 3 If medium or high probability is applicable to any of the preliminary screening questions, the site analytical suite will be optimised to include preliminary sampling and testing for PFAS in soil (ASLP Testing) and water.

5.3 Emerging Chemicals

The NSW EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the EHC Act (1985) to selectively and specifically control chemicals of concern and limit their potential impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues. As with PFAS compounds, EI considered chemicals controlled by CCO's and other potential emerging chemicals for the current site and where identified, the chemical was included within the potential contaminants of concern. The findings of this assessment are outlined in **Table 5-3** below.

Table 5-3	Emerging	or Controlled	Chemicals
-----------	----------	---------------	-----------

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? ¹	No
Were organotin products (CCO, 1989) used or stored on site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? 3	Yes Possibly contained within pesticides if used onsite.
Were scheduled chemical or wastes (CCO, 2004) used or stored $^{\rm 4}$	Yes Possible pesticides used onsite.
Are other emerging chemicals suspected? 5	No
If Yes to any questions, has site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air and water	Yes Identified COPC in Section 5.5.3

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the Site.

Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.

Note 3 From older transformer oils & electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some cVOCs).

5.4 Conceptual Site Model

5.4.1 Overview

In accordance with NEPM (2013) Schedule B2 – Guideline on Site Characterisation and to aid in the assessment of data collection for the site, EI developed a conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for identifying data gaps in the existing site characterisation and future site assessments. Potential contamination sources, exposure pathways and receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways.

5.4.2 Potential Contamination Sources

On the basis of the PSI findings potential contamination sources for the site were the importation of fill from an unknown source, deposited within the site.

5.4.3 Contaminants of Potential Concern

Based on the findings of the PSI, the contaminants of potential concern (COPC) at the site are considered to be:

- Soil heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds *benzene, toluene, ethyl-benzene* and *xylenes* (BTEX), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOCs – including chlorinated VOCs), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), and asbestos.
- Groundwater HM, TRH, BTEX, PAH and VOC (including cVOCs).

5.4.4 Potential Pollutant Linkages

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised in **Table 5-4**.

Table 5-4 Conceptual Site Model

Contamination Source	Transport Mechanism	Exposure Pathway	Potential Receptor
Fill soil and deeper natural soils, should onsite contamination be present onsite.	 Physical erosion and wind mobilisation during ground disturbance activities (e.g. excavation and earthmoving); and Leaching of contaminants from impacted soils exposed to water. 	 Dermal contact; Ingestion; Inhalation; and Uptake (plants). 	 Site Workers during construction; Future site users; and Plants (in proposed landscaped areas)

Page | 15

6. Sampling, Analytical, and Quality Plan (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.1 Data Quality Objectives (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps	Details
1. State the Problem	The site is to be redeveloped as outlined in Section 1.2, for mixed land use scenarios representing;
Summarise the contamination problem	 A commercial industrial scenario for users of the basements; and
that will require new environmental	 A residential (minimal access to soil) scenario for the above ground landscaping; and
data, and identify the resources available to resolve the problem;	 Recreational scenarios for the bowling green area.
develop a conceptual site model	Desktop studies identified the potential for soil contamination to exist as a result of various, possible sources, as listed in Section 5.2 . In light of the available historical information, a conceptual site model has been developed (Table 5-1) for the site.
	The findings of the investigation must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed mixed-use redevelopment.
2. Identify the Goal of the Study	Based on the objectives outlined in Section 1.4, the following decisions are identified:
(Identify the decisions)	• Has the site been adequately characterised with sufficient and appropriate sampling coverage (vertical and lateral) to assess
Identify the decisions that need to be	for the presence of potential contamination sources?
made on the contamination problem	• Has the nature, source and extent of any onsite impacts (soil, groundwater, and/or vapour) been defined?
and the new environmental data	What influence do site-specific, geologic conditions have on the fate and transport of any impacts that may be identified?
required to make them	 Does the degree of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite?
	 Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, assuming remedial action is necessary? If not, what are the remaining data gaps requiring closure?
3. Identify Information Inputs	Inputs to the decision making process include:
(Identify inputs to decision)	 Proposed development and land use;
Identify the information needed to	 Aerial photographs, historical land title records, council records;
support any decision and specify which	 National (NEPC 2013) and State-based (NSW EPA, various) environmental guidelines;
inputs require new environmental measurements	 Soil and groundwater sample results and observations obtained from intrusive investigation locations, and to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors, analysed for the contaminants of potential concern (COPC) presented in Section 5.5.2.
	At the end of the assessment, a decision must be made regarding whether the contamination status of the land is suitable for the proposed redevelopment, or if additional investigation and/or remediation is required to make the site suitable.

Page
Page

DQO Steps	Details
4. Define the Boundaries of the Study	Spatial – The PSI is limited to the site boundaries (Figure 2) and the maximum depth of borehole advancement at each samp location.
Specify the spatial and temporal aspects of the environmental media	Temporal – The results will be valid on the day samples are collected and will remain valid if no changes to site use occur, and contamination (if present) does not migrate from off-site sources.
that the data must represent to support decision	Constraints of sampling requiring consideration include access restrictions (due to site operations and/or conditions) and presence of both above and underground services / structures.
5. Develop the Analytic Approach	The decision rules for the investigation are:
(Develop a decision rule)	What are the characteristics of soil at the site?
To define the parameter of interest, specify the action level, and integrate	Soil boreholes will be advanced to natural, sampled and logged to characterise underlying conditions.
previous DQO outputs into a single	 What are the characteristics of groundwater at the site?
statement that describes a logical basis for choosing from alternative actions	Groundwater monitoring wells will be installed to determine physical characteristics, chemical composition and flow direction o groundwater underlying the site.
	Is the site suitable for the proposed land use?
	If the concentrations of contaminants in the soil and groundwater data are below the relevant health-based and ecological criteria for the intended land use; then the site will be deemed suitable for the proposed development.
	Is additional information required to determine the suitability of the site for its proposed use?
	Should additional information be required as determined by the conceptual site model (CSM), then appropriate recommendations will be provided.
	Decision criteria for analytical data will be defined by the Data Quality Indicators (DQI) presented in Table 6-2.
6. Specify Performance or Acceptance Criteria (Specify limits	Specific limits for this project are to be in accordance with NEPM, appropriate data quality indicators (DQIs) for assessing the useability of the data and EI standard procedures for field sampling and handling.
on decision errors) Specify the decision-maker's	To assess the useability of the data, pre-determined DQIs for completeness, comparability, representativeness, precision and accuracy were adopted, as presented below in Table 6-2 .
acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	If any of the DQIs are not met, further assessment will be necessary to determine whether the non-conformance will significantly affect the useability of the data. Corrective actions may include requesting further information from samplers and/c analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of samples.

DQO Steps	Details
7. Develop the Detailed Plan for Obtaining Data (Optimise the design	Site history indicates the potential for contamination to exist. To achieve the decision rules, the intrusive investigation included:
for obtaining data)	 Nine sampling locations, distributed at accessible area of the site;
Identify the most resource-effective	Installation and sampling of groundwater wells of the redevelopment area, to determine groundwater quality.
sampling and analysis design for general data that are expected to satisfy the DQOs	 An upper soil profile sample will be collected at each borehole location and tested for contaminants of potential concern, to assess the conditions of the fill layer, and impacts from commercial and industrial activities at ground level. Further sampling would also be carried out at deeper soil layers. Samples will be selected based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) with consideration of subsurface stratigraphy.

- Representative groundwater samples will be collected and analysed for groundwater characterisation.
- Review of the results will be undertaken to determine if further intrusive investigation (i.e. additional sampling) is warranted.

6.2 Data Quality Indicators

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 8**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR)
	Laboratory – Laboratory control spike and matrix spike	Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage difference
	Laboratory – Laboratory duplicate and	(RPD [%])
	matrix spike duplicate	Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR)
	Laboratory – Method blank	Prescribed by the laboratories
Completeness	Completion (%)	-

Table 6-2 Data Quality Indicators

6.3 Soil Assessment Criteria

The assessment criteria proposed for this project are outlined in **Table 6-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Table 6-3 Adopted Investigation Levels for Soil

Adopted Guidelines	Rationale
NEPM, 2013	Soil Health-based Investigation Levels (HILs)
Soil HILs, EILs, HSLs, ESLs & Management	As the site was proposed for mixed use development with three levels basement, the samples to be assessed against the NEPM 2013 HIL-B thresholds for residential sites with minimal access to soils.
Limits for TPHs	Soil Health-based Screening Levels (HSLs)
	As a conservative approach, the NEPM 2013 Soil HSL A & $B - low$ to high density residential thresholds for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene. Asbestos HSLs:
	WADOH (2009) assessment criteria, as presented in NEPM (2013), were not adopted during this investigation. Presence / absence of asbestos (not-detected) were utilised for preliminary screening purposes.
	Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs)
	EILs / ESLs were considered relevant for the retained deep soils of the site. EILs / ESLs only apply to the top 2 m (root zone). The derived EIL criteria presented by EI are based of the addition of site specific Added Contaminant Limit (ACL) criteria and the Ambient Background Concentration (ABC) for an old low traffic suburb. In lack of physiochemical properties for soils across the site, a site specific ACL criteria for heavy metals based on averaged physiochemical properties presented in Chapman and Murphy (1989) for the Blacktown (bt) soil landscape.

Adopted Guidelines	Rationale		
Management Limits for Petroleum Hydrocarbons			
	As a conservative approach, should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.		
CRC Care	High reliability ecological criteria for Benzo(α)pyrene		
(2017) High reliability ecological criteria for Benzo(α)pyrene	The CRC Care criteria has been selected for ecological assessment of $Benzo(\alpha)$ pyrene due to its higher reliability than the NEPM assessment level.		

6.4 Groundwater Assessment Criteria

In accordance with DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, groundwater acceptance criteria are based on environmental values considered relevant for groundwater use at the site and surrounding uses of groundwater and surface waters that may be effected by the site. Potential environmental values include:

- Aquatic ecosystems: surface water and groundwater ecosystems;
- Human Uses: these include but are not limited to potable water supply, agricultural water supply (irrigation and stock watering), industrial water use, aquaculture and human consumption of aquatic foods, recreational use (primary and secondary contact with surface waters), and visual amenity of surface waters;
- Human health in non-use scenarios: this includes consideration of health risks that may arise without direct contact between humans and the groundwater, for example, exposure to volatile contaminants above groundwater contaminant plumes; and,
- Buildings and structures: this includes protection from groundwater contaminants that can degrade building materials through contact, for example, the weakening of building footings resulting from chemically aggressive groundwater.

Cultural and spiritual values that are associated with the environment, including groundwater, should also be protected. Cultural and spiritual values may include spiritual relationships, sacred sites, customary uses, the plants and animals associated with the water, drinking water supplies, and recreational activities. In managing groundwater contamination, it is generally considered that cultural and spiritual values will be protected where groundwater quality protects all other relevant environmental values on a site.

Based on a groundwater bore search conducted by EI (Table 2-4) there were 5 registered bores located within a 500 m radius of the site. Several of these bores were registered for waste water and monitoring, and did not identify the use of domestic or recreational groundwater in the surrounding area. As such, the associated exposure risks of these users will be considered in this assessment.

An assessment of the applicability of groundwater environmental values for the site and off-site is provided in **Table 6-4**.

Beneficial Use	Rationale
Aquatic Ecosystems - Surface water ecosystems and groundwater ecosystems	Groundwater Investigation Levels (GILs) for Marine Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZG 2018 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as groundwater is expected to discharge to Parramatta River, via Stevensons Creek located approximately 550 m southwest of the site. Due to the ANZG, 2018 criteria for petroleum hydrocarbons being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, as per the guidance provided in DEC (2007) Guidelines for the Assessment <i>and</i> <i>Management of Groundwater Contamination</i> .
Human Health – Basement User (non-use scenario)	Health-based Screening Levels (HSLs) As groundwater at the site will be in contact with the proposed basement, HSL groundwater criteria were applied as a screening tool only, for preliminary assessment. Should TRH F1, F2 or BTEXN be present in groundwater, additional investigation by means of soil vapour assessment may be necessary to adequately quantify the potential risk posed to users of the basement
Recreational Exposure (primary and secondary contact).	There is no planned use of groundwater for recreational use at the site. However, as excavation extends to depths potentially below the SWL of the site, direct contact with groundwater may be realised for construction workers, and trench / maintenance workers for the end use development. Therefore, recreational exposure scenarios were relevant for assessment of groundwater within the site. Recreational Use Criteria Investigation levels for recreational use are based on NHMRC (2017) Drinking Water Guidelines. The lowest of the health guideline multiplied
	Drinking Water Guidelines. The lowest of the health guideline multiplied by ten, or the aesthetic guideline has been selected. Health guidelines have been multiplied by 10 to account for accidental ingestion of up to 200ml of water during recreational use (compared to 2L ingestion used to generate the drinking water criteria).
Human Use, including: Potable Water; Irrigation; Stock Watering Industrial Water Use Aquaculture	There is no planned use of groundwater for the human uses stated. El checked the NSW Department of Primary Industries Aquaculture Industry Directory 2016 for listings of aquaculture businesses in this, and in neighbouring areas, and did not identify this beneficial use in proximity to the site.
Visual amenity to surface waters	Given the distance of Stevenson Creek from the site, this environmental value is not considered relevant.

Table 6-4 Adopted Investigation Levels for Groundwater

7. Assessment Methodology

7.1 Sampling Rationale

With reference to the CSM described in **Section 5.4**, soil and groundwater investigation work was planned in accordance with the following rationale:

- Sampling fill and natural soils from nine test bore locations located at accessible area of the site to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at three monitoring wells located close to the up gradient and down gradient site boundaries to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified COPC.

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in Section **9**.Soil Investigation

The soil investigation works conducted at the site are described in **Table 7-1**. Test bore locations are illustrated in **Figure 2**, **Appendix A**.

Activity/Item	Details
Fieldwork The site investigation was conducted on the 3, 4 and 5 August 2020. BH BH2M, BH3 and BH4M were drilled as part of the EI (2020) geotechnical investigation, and terminated in shale bedrock. BH5 and BH7 were terminater in atural silty clay. BH6, BH8 and BH9 were terminated in fill.	
Investigation Method & Depth	 BH1M, BH2M, BH3 and BH4M were drilled using a Hanjin solid flight auger drill rig utilising rock coring drilling methods. Final bore depths ranged from 12.59 m to 19.04 mBGL. BH1M, BH2M and BH4M were converted to groundwater monitoring wells.
	 BH5 to BH9 were drilled by hand auger. Final bore depths ranged from 0.6 m to 1.6 mBGL.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix H .
Field Observations (including visual and olfactory signs of potential contamination)	A summary of field observations compiled during intrusive investigations is provided on borehole logs in Appendix H . Field observations are summarised in Section 9.1.2 .

 Table 7-1
 Summary of Soil Investigation Methodology

Activity/Item	Details
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars.
	 Blind field duplicates was separated from the primary samples and placed into glass jars.
	 A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening.
	 A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
Decontamination Procedures	Dedicated gloves were used for the collection of each sample. Sampling equipment (i.e. trowel and shovel) was decontaminated between uses by washing in a solution of potable water and Decon 90 then rinsed with potable water.
Sample Preservation	Samples were stored in a chilled chest (with frozen ice packs), whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict COC conditions and COC certificates and laboratory sample receipt documentation were provided to El for confirmation purposes, as discussed in Section 8 .

7.2 Groundwater Investigation

The groundwater investigation works conducted at the site are described in **Table 7-2**. Monitoring well locations are illustrated in **Figure 2**, **Appendix A**.

Table 7-2 Summary of Groundwater Investigation Methodology

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on 3 and 4 August 2020, with water level gauging, well purging, field testing, and groundwater sampling conducted on 14 August 2020.
Well Construction	Three test bores were converted to groundwater monitoring wells as follows:
	BH1M: 8.4 m deep, onsite, up-gradient;
	BH2M: 11.5 m deep, onsite, down -gradient; and
	BH4M: 7.5 m deep, onsite, down -gradient.
	Drilled by Geosense Drilling using a Hanjin DB8 with TC-bit auger followed by NMLC coring in bedrock. Well construction details are tabulated in Table 9-2 and documented in the bore logs presented in Appendix H . All wells were seated in shale and were installed to screen the aquifer within the interval below:
	 BH1M: 2.4 m to 8.4 mBGL;
	 BH2M: 5.5 m to 11.5 mBGL; and
	BH4M: 4.5 m to 7.5 mBGL.

Activity/Item	Details
Well Construction Standards	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present;
	 Base and top of each well was sealed with a uPVC cap;
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval;
	 Granular bentonite was applied above annular filter to seal the screened interval
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and
	 Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model Super Twister). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan provided by the Client (Ref. ALTIS Architecture, Job No. 2817.01, dated 7/7/2020). Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (mAHD).
Well Gauging & Groundwater Flow Direction	Monitoring wells were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 14 August 2020 and all measured SWLs are shown in Table 9-2 .
	The groundwater flow direction is inferred to be east.
Well Purging & Field Testing	Newly installed monitoring wells were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 14 August 2020. All measured SWLs are shown in Table 9-3 .
	A transparent HDPE bailer was used to visually assess for the presence PSH prior to the commencement of well purging. PSH was not detected in wells during the investigation.
Groundwater sampling	Once three consecutive field measurements were recorded for the purged waters to within \pm 10% for DO, \pm 3% for EC and \pm 0.05 for pH, this was considered to indicate that representative groundwater quality had been achieved and final physico-chemical measurements were recorded. Groundwater samples were then collected using a transparent, dedicated, HDPE bailer. No volatile organic odours were detected during well purging or groundwater sampling.
Decontamination Procedure	 Decontamination was not required as sampling equipment was stored and transported prior to use in factory-sealed, plastic sleeves, while each bailer was dedicated to each individual well.
	 All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling.
	 While ice was used to keep the samples cool, all melt water was continuously drained from the Esky to prevent cross-contamination of samples.
	 The water level probe and water quality kit probes were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells.

Activity/Item	Details
Sample Preservation	Samples were stored in a chilled (with ice-bricks) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix J .

8. Data Quality Assessment

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meet the objectives of the project (Ref. US EPA, 2006). Data quality assessment involves an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- Suitable records of fieldwork observations including test pit logs;
- Relevant and appropriate sampling plan (density, type, and location);
- Use of approved and appropriate sampling methods;
- Preservation and storage of samples upon collection and during transport to the laboratory;
- Complete field and analytical laboratory sample COC procedures and documentation;
- Sample holding times within acceptable limits;
- Use of appropriate analytical procedures and NATA-accredited laboratories;
- Required LOR (to allow for comparison with adopted IL);
- Frequency of conducting quality control measurements;
- Laboratory blanks;
- Field duplicates;
- Laboratory duplicates;
- Matrix spike/matrix spike duplicates (MS/MSDs);
- Surrogates (or System Monitoring Compounds);
- Analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigation at the site are discussed in detail in **Appendix L**. Laboratory QA/QC policies and DQOs are presented in **Appendix M**.

8.1 Quality Overview

On the basis of the field and analytical data validation procedure employed, the overall quality of the analytical data produced for the site was considered to be of an acceptable standard for interpretive use and preparation of a conceptual site model (CSM).

9. Results

9.1 Soil Investigation Results

9.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes may be described as a layer of fill overlaying shale. The geological information obtained during the investigation is summarised in **Table 9-1** and borehole logs from these works are presented in **Appendix H**.

Layer	Description	Average Approximate Depth to Top & Bottom of Layer (mBGL)	
		Тор	Bottom
Bitumen	Bitumen (BH3 and BH4M).	0.0	0.03
Fill	Silty sand, gravelly sand, and silty clay fill with traces of rootlets, no odour (all boreholes).	0.03	1.48+
Natural Soil	Silty clay, medium plasticity, red or brown mottled pale grey, with some ironstone gravel, no odour. (BH5 and BH7).	0.95	1.2+
Shale	Shale, brown and pale grey then dark grey, no odour (BH1M, BH2M, BH3 and BH4M).	2.23	15.61+

Table 9-1 Generalised Subsurface Profile

Note 1 Notes:

+ Maximum termination depth of borehole

9.1.2 Field Observations

Soil samples were obtained from the boreholes at various depths ranging between 0.1 m to 5.5 mBGL. Anthropogenic inclusions of bitumen were noted within fill encountered at sampling locations BH1M and inclusions of ash was identified within fill at BH1M and BH6. These inclusions are well known to contain significant concentrations of PAH contaminants, and the observations were consistent with the reported presence of these contaminants within fill sampled from BH1 and BH6.

9.2 Groundwater Investigation Results

9.2.1 Monitoring Well Construction

A total of three groundwater monitoring wells were installed onsite. Well construction details for the installed groundwater monitoring wells are summarised in **Table 9-2**.

Well ID	Bore Depth (mBGL)	Approx. RL (surface)	Approx. RL (TOC)	Screen Interval (mBGL)	Lithology Screened
BH1M	8.4	103.1*	103	2.4-8.4	Shale
BH2M	11.5	98.5*	98.4	5.5-11.5	Shale
BH4M	7.5	103.8*	103.7	4.5-7.5	Shale

Table 9-2 Monitoring Well Construction Details

Notes:

mBGL - metres below ground level.

RL - Reduced Level - Assumed elevation in metres relative to Australian Height Datum (m AHD).

TOC - top of well casing).

RL (TOC) - Assumed elevation at TOC in mAHD.

* Ref. ALTIS Architecture, Job No. 2817.01, dated 7/7/2020

9.2.2 Field Observations and Water Test Results

A single GME was conducted on 14 August 2020. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 9-3** and copies of the completed Field Data Sheets are included in **Appendix I**.

Table 9-3	Groundwater	Field Data
-----------	-------------	------------

Well ID	SWL (mBTOC)	SWL RL (m AHD)	DO (mg/L)	Field pH	Field EC (μS/cm)	Temp(°C)	Redox (mV)	Odours / Turbidity
BH1M	3.04	99.96	0	6.46	1593	22.37	216	None/ low
BH2M	5.15	93.25	0	7.5	1920	21.84	187	None/ medium
BH4M	4.87	98.83	0.15	6.75	801	22.50	203.7	None/ low

Notes:

SWL – Standing Water Level as measured from TOC (top of well casing) prior to groundwater sampling. mBTOC – metres below top of well casing.

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (mAHD).

Redox – Oxidation and reduction potential. Redox reported in **Table 9-4** has been adjusted relative to standard hydrogen electrode (SHE) by adding 205 mV (field probe potential) to field reading, as advised by the test equipment manufacturer). Refer to **Appendix I** for field redox readings pre-adjustment.

L - litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

 μ S/cm – micro Siemens per centimetre (EC units).

DO – Dissolved Oxygen in units of milligrams per litre (mg/L).

All groundwater parameters (pH, EC and DO) were tested on site.

9.3 Laboratory Analytical Results

9.3.1 Soil Analytical Results

A summary of laboratory results from this investigation showing test sample quantities, minimum/maximum analyte concentrations for primary samples and samples found to exceed the adopted guidelines, is presented in **Table 9-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria is presented in **Table B1**, **Appendix B** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix J** and all laboratory analytical reports for tested soil samples are presented in **Appendix K**.

Table 9-4	Summary of Soil An	alytical Re	sults	
No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels
Priority Met	als			
13	Arsenic	1	35	None
13	Cadmium	<0.3	0.5	None
13	Chromium (Total)	2.4	15	None
13	Copper	10	54	None
13	Lead	10	220	None
13	Nickel	1.2	36	None
13	Zinc	5.8	230	None
13	Mercury	<0.05	2.2	None
PAHs				
13	Benzo(a)pyrene	<0.1	5.6	None
13	Carcinogenic PAHs	<0.3	8.1	BH1M_0.7-0.8 (8.1 mg/kg) exceed HIL B (4 mg/kg)
13	Naphthalene	<0.1	<0.1	None
13	Total PAHs	<0.8	63	None
TRHs (inclu	iding BTEX)			
13	TRH C ₆ -C ₁₀ minus BTEX (F1)	<25	<25	None
13	TRH >C ₁₀ -C ₁₆ (F2) minus Naphthalene	<25	<25	None
13	TRH >C ₁₆ -C ₃₄ (F3)	<90	100	None
13	TRH >C ₃₄ -C ₄₀ (F4)	<120	<120	None
13	Benzene	<0.1	<0.1	None
13	Toluene	<0.1	<0.1	None
13	Ethylbenzene	<0.1	<0.1	None
13	Total Xylenes	<0.3	<0.3	None
OCPs				
10	OCPs	<1	4	None
OPPs			·	
10	OPPs	<1.7	<1.7	None
PCBs				
10	PCBs	<1	<1	None
Asbestos (presence/absence)			
9	Asbestos	ND	Yes	Asbestos found in sample BH7_1.0-1.1
				. –

Table 9-4 Summary of Soil Analytical Results

Note: ND – Not Detected

Priority Metals,

With reference to **Table B1**, all priority metals concentrations were below the corresponding health-based SILs and EILs (**Section 7-2**).

PAHs

As summarised in **Table B1**, all samples tested were reported below the laboratory PQL and the adopted human health SIL and ESL, with exception of Carcinogenic PAHs in fill sample BH1M_0.7-0.8 (8.1 mg/kg) exceed the HIL B (4.0 mg/kg).

TRHs including BTEX

With reference to **Table B1**, TRHs and BTEX concentrations were reported below the laboratory PQL and the adopted human health SIL and ESL.

OCPs, OPPs and PCBs

As illustrated in **Table B1**, the total concentrations of OCPs, OPPs and PCB were reported below the laboratory PQL and the adopted human health SIL.

VOCs

As illustrated in Table B1, the concentrations of VOCs were reported below the laboratory PQL.

Asbestos

As summarised in **Table B1**, no detectable asbestos concentrations were identified in any of the tested soil samples, with exception of Chrysotile Asbestos found in fill sample BH7_1.0-1.1. The asbestos was detected within an 8x2x2mm fibrous rope material, and was considered to represent asbestos containing material (ACM) or friable asbestos (FA).

9.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table B2**, **Appendix B**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix J**. Copies of the laboratory analytical reports are attached in **Appendix K**.

No. of primary samples	Analyte	Min. Conc. (μg/L)	Max. Conc. (µg/L)	Sample locations exceeding investigation levels
Metals				
3	As	<1	6	None
3	Cd	<0.1	0.3	None
3	Cr	<1	27	BH2M (27 μg/L) (GIL Marine Water: 4.4 μg/L)
3	Cu	1	96	ВН1М (5 μg/L); ВН2М (96 μg/L) (GIL Marine Water: 1.3 μg/L)
3	Pb	<1	37	BH2M (37 μg/L)

Table 9-5 Summary of Groundwater Analytical Results

3

3

1,2,4-

trimethylbenzene

Other VOCs

<0.5

Not detected

No. of primary samples	Analyte	Min. Conc. (μg/L)	Max. Conc. (µg/L)	Sample locations exceeding investigation levels
				(GIL Marine Water: 4.4 µg/L)
3	Hg	<0.1	<0.1	None
3	Ni	3	24	BH2M (24 μg/L) (GIL Marine Water: 7 μg/L)
3	Zn	28	170	BH1M (69 μg/L); BH2M (170 μg/L); BH4M (28 μg/L). (GIL Marine Water: 15 μg/L)
PAHs				
3	Total PAHs	<1	<1	None
3	Benzo(α)pyrene	<0.1	<0.1	None
3	Naphthalene	<0.1	0.3	None
BTEX				
3	Benzene	<0.5	<0.5	None
3	Toluene	<0.5	1.7	None
3	Ethylbenzene	<0.5	0.5	None
3	o-xylene	<0.5	2.2	None
3	m/p-xylene	<1	6	None
TRHs				
3	F1	<50	66	BH4M (66 μg/L) (GIL Marine Water: 50 μg/L)
3	F2	<60	290	BH2M (290 μg/L) (GIL Marine Water: 60 μg/L)
3	F3	<500	<500	None
3	F4	<500	<500	None
VOCs				
3	Chloroform (THM)	<0.5	7.2	None
3	1,3,5- trimethylbenzene	<0.5	1.5	None

3.4

Not detected

None

None

10. Site Characterisation

10.1 Soil Characterisation

Contaminant concentrations in soils were found to be below the adopted human health-based criteria and ecological criteria for site land use settings, with the exception of the following:

Risk posed to human health:

- Carcinogenic PAHs in fill at BH1M_0.7-0.8 (8.1 mg/kg) exceeded the human health based criteria HIL-B of 4.0 mg/kg; and
- Friable asbestos 'fibrous rope material' was reported in fill samples BH7_1.0-1.1.

BH1M was also identified to contain asphalt fragments, being the likely source of the reported PAH concentrations. Asphalt / bitumen is considered to be a generally inert material, and the PAH contaminants within these materials are typically encapsulated, with low to no leachability potential, therefore the actual risk posed by the PAH contaminants within fill sampled at BH1M was considered to be low. Furthermore, the sample was collected from material located within the proposed basement excavation therefore would be removed, and would not remain within the site.

Asbestos was identified at BH7_1.0-1.1, within fill material, however was located within the proposed basement footprint, and would be removed. The use of boreholes significantly restricts the accessible soil exposed during sampling, and would not be adequate for full assessment of the site for the presence of ACM. Boreholes were necessary for the current sampling event as site structures remained at the surface, restricting access to site soils. Additional investigations of the fill material across the site would be required to determine the extent of ACM within fill across the site, however would require demolition of all above ground structures, to gain access. Furthermore, additional sampling of the deep fill material would be required for waste classification purposes, to enable the offsite disposal of surplus material from the bulk excavation works.

10.2 Groundwater Characterisations

Based on the findings from the groundwater monitoring and sampling event, concentrations of tested analytes (PAHs and BTEX) were all reported below the adopted criteria (GILs).

A number of metals were reported at concentrations below investigation criteria, except for chromium, copper, lead, nickel and zinc, which exceeded criteria at a number of monitoring locations. While exceeding criteria, these concentrations are generally low and at concentrations indicative of background groundwater quality within an urban setting. In light of this, no further consideration is given for the investigation of groundwater.

Total recoverable hydrocarbons (TRH) F1 was detected within groundwater sampled within location BH2M and TRH F2, chloroform, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene were detected in groundwater sampled from the down-gradient monitoring well BH4M.

The reported TRH F2 concentrations were minor, and given the slow recovery of groundwater typically observed within a fractured rock aquifer, the reported results may be influenced by the presence of sediment within the water column, and may not represent the groundwater body itself. As groundwater will be in direct contact with the proposed basement, the reported detections may indicate a potential vapour intrusion risk to users of the basement; therefore additional investigation will be required. The investigations should include further development of the installed wells prior to sampling, to ensure all sediment is removed from each location,

prior to sampling. Should detections of TRH be identified within the second round of sampling, a 'silica gel clean-up' of the submitted sample should be completed, to remove any interference of naturally occurring F2 contaminants. This will ensure that the reported detections are representative of anthropogenic TRH contaminants, being the contaminants of risk to the site receptors.

Detections of trihalomethanes (THMs) including chloroform, are known to be present as a result of drinking water disinfection, and may be present as a result of drilling, which introduced potable water to the borehole annulus, as part of rock coring drilling techniques. Furthermore, the detections of trimethylbenzenes may also be related to the use of lubricants as part of the rock coring methods. Further well development, followed by additional sampling will be necessary to confirm the results reported for Round 1. Should these impacts remain, a soil vapour assessment may be required. Review of Conceptual Site Model

On the basis of investigation findings the CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 5.5** have largely been addressed; however, the following remaining data gaps need to be addressed in subsequent investigation works:

- Assessment of existing site structures onsite for the presence of hazardous building materials;
- A visual inspection of the site surface, post demolition, to assess the presence of ACM;
- Further assessment of groundwater including further well development, analysis of TRH, heavy metals, VOC's pH, hardness and PFAS. Where TRH is detected, samples must undergo a 'silica gel clean-up' to remove any interference of naturally occurring hydrocarbons.
- Given the identified carcinogenic PAHs and asbestos, adequate characterisation of the site would be required, in accordance with DECC (1995) Sample Design Guidelines. An additional 14 sampling locations will be required to achieve compliance with the minimum sampling points required for site characterisation, and should utilise test pitting methods to adequately assess the presence of asbestos,
- Additional sampling points may be used for characterisation of fill for offsite disposal, and should extend to natural soils to assess natural material against the virgin excavated natural material (VENM) exemption;
- Further assessment of soil should include characterisation of soil to be retained within the southern part of the site, including analysis of pH, cation exchange capacity (CEC) and clay content, to evaluate the ecological suitability of the material; and
- The quality of soil to be retained beneath the basement requires further assessment.

11. Conclusions

The property located at The Hills Club, Baulkham Hills NSW was the subject of a Preliminary Site Investigation with Limited Sampling. The investigation was prepared to assess the nature and degree of on-site contamination associated with current and former uses of the property.

Based on the findings of this assessment, it is concluded that:

- Land titles records and historic aerial photography indicated that the site was owned by private persons then was developed into a bowling club since at least 1951 to the current date;
- The Hills Shire Council records indicated that no evidence was found regarding any previous manufacturing activities, on-site storage of chemicals, and site contamination related incidents;
- A search of SafeWork NSW records did not identify records pertaining to the significant storage of dangerous goods or the presence of UST's within the site;
- A search through the record of notices for contaminated land indicated that the site was free of statutory notices issued by the NSW EPA, and was not identified as a contaminated site notified to the EPA.
- A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 identified a Shell Coles Express Service Station located 110m to the west of the site, being up hydraulic gradient was on the list.
- POEO search did not identify any record for the site or sites in proximity (≤ 500 m);
- During this investigation the site was in use, occupied by The Hills Club. The site walkover inspection did not identify any evidence of UPSS on site or source of contamination from the neighbouring properties. Bitumen and ash were found in the fill at BH1M and BH6;
- Soil sampling and analysis were conducted at nine (9) borehole locations (BH1M to BH9) within the accessible area of the site. The intrusive investigation was completed in conjunction with a geotechnical investigation, therefore applied a mixed, judgemental and systematic sampling regime, with allowances made for structural obstacles (e.g. buildings, services, and other physical obstructions in use by existing operating businesses) The sampling was considered to be appropriate for preliminary investigation purposes.);
- The sub-surface layers of the site comprised fill materials consisting of predominantly silty sand, overlying shale bedrock at depth;
- Soil samples reported Carcinogenic PAHs within fill sampled at BH1M. The concentrations
 reported exceeded human health criteria, however were considered to be a result of the
 presence of asphalt within this location, and would therefore pose a low risk to human
 health receptors of the site;
- Asbestos containing material was identified within fill sampled at BH7. The analysis was qualitative therefore was not comparable to the adopted Health-based screening levels;
- Sample locations BH1M and BH7 were located within the basement footprint, therefore fill
 associated with the the reported exceedances would be removed as part of bulk excavation
 for the basement, and would not remain for the site's end use;

- Visual assessment of the site surface (post demolition) would be required to adequately assess the site surface for the presence of ACM;
- Additional characterisation of the fill and natural soil would be required to facilitate offsite disposal of surplus material resulting from the excavation works;
- Sampling locations did not assess soil to be retained within the southern part of the site, and additional assessment of this material will be required to determine suitability. Once the above ground buildings are removed;
- Groundwater was identified during monitoring between 3.14 5.25 mBGL. Standing water levels collected within the site suggest groundwater to migrate in a north-easterly direction, towards Stevenson Creek. The variation in standing water levels observed may represent a confined aquifer, and may not represent true groundwater levels within the site;
- Groundwater samples reported concentrations of the heavy metals, chromium, copper, lead, nickel and zinc exceeding the ecological criteria, however were considered to be typical of urban groundwater environments, and did not pose a risk to the site's receptors; and
- Low concentrations of TRH F1 and F2, Chloroform, 1,3,5-trimethylbenzene and 1,2,4trimethylbenzene were reported in hydraulically down-gradient monitoring wells BH2M and BH4M. The detections of these contaminants may be a result of drilling methods (rock coring) used for the geotechnical investigations. Being a fractured rock aquifer, development of the newly installed wells may be inadequate, due to the slow recovery of groundwater typical of such environments. Additional development and sampling of the wells is required to confirm these results.

In view of the above findings and subject to the statement of limitations (**Section 13**), EI have identified a moderate and potentially unacceptable risk posed by contamination to receptors of the proposed development. As such, additional investigation, such as the completion of a detailed site investigation (DSI) will be required to adequately determine the actual risk posed to the site's receptors, and determine if the site is suitable for the proposed mixed use as a residential (minimal access to soil) and recreational bowling facility.

12. Recommendations

El consider that the site can be made suitable for the proposed development, subject to the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures prior to demolition works;
- A Detailed Site Investigation (DSI) will be required after site building demolition to gain access to the site surface. The DSI should include:
 - A visual inspection of the entire site surface for asbestos;
 - Additional sampling of soil at 14 additional locations to achieve the minimum sampling requirements for a 1.35 hectare site, as required by DECC (1995) Sample Design Guidelines;
 - Sampling locations should assess fill and natural soils at each location, and the analytical results may be utilised for the classification of surplus material designated for offsite disposal;
 - At least three sample locations should be positioned at proposed retained soil area at southern portion of the site to assess the ecological suitability of this material; and
 - An additional round of groundwater monitoring (GME) utilising the 3 existing wells, including the collection of survey data to determine flow direction.
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as virgin material (VENM).

13. Statement of Limitations

This report has been prepared for the exclusive use of Arden Clubs on behalf of The Hills Club, who is the only intended beneficiary of El's work. The scope of the investigations carried out for the purpose of this report is limited to those agreed with Arden Clubs on behalf of The Hills Club on 11 August 2020.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

EI has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited assessment of historical site use and current use of the site. Due to the preliminary nature of this assessment, findings are not based on actual samples collected or testing conducted. EI has relied upon information provided by the Client and other third parties to prepare this document, some of which could not be verified by EI due to the anecdotal or historical nature of the information.

EI's professional opinions are reasonable and based on its professional judgment, experience and training.

El's professional opinions contained in this document are subject to modification if additional information is obtained through the data searches that have been initiated with government authorities, but for which the requested information is still pending.

Technical opinions may also be amended in the light of further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, August 2018.

Australian Standard (2005) Table E1 – Minimum sampling points required for site characterisation, in Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.

Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes Series Sheet 9030 of Penrith 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.

DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.

DMR (1991) Penrith 1:100,000 Geological Series Sheet 9030 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.

El Australia, *Geotechnical Investigation; The Hills Club, Baulkham Hills* (El Report E24782.G03, dated 1 September 2020);

EPA (2014) Waste Classification Guidelines, NSW EPA, November 2014;

EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, NSW EPA, October 2017;

Murphy CL (1997) Acid Sulfate Soil Risk of the Liverpool Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit;

NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013;

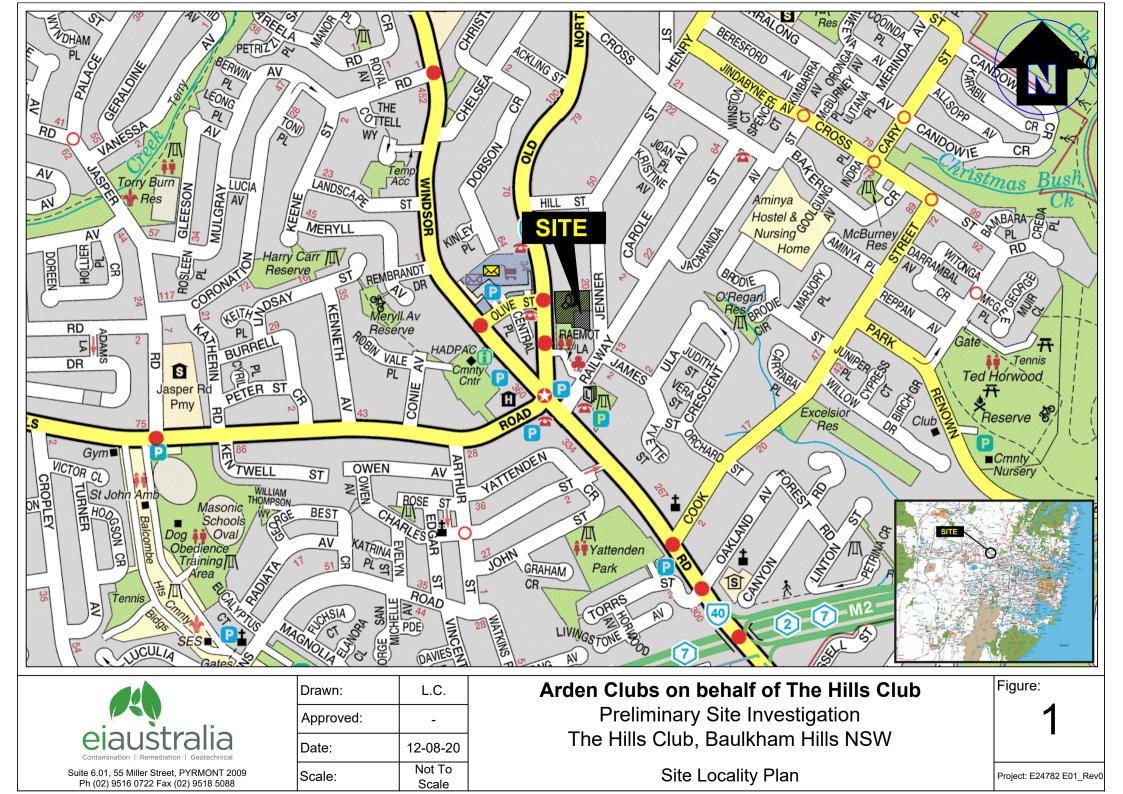
NSW Environment Protection Authority (2020) Guidelines for Consultants Reporting on Contaminated Sites, EPA 2020P2233, 5 May 2020;

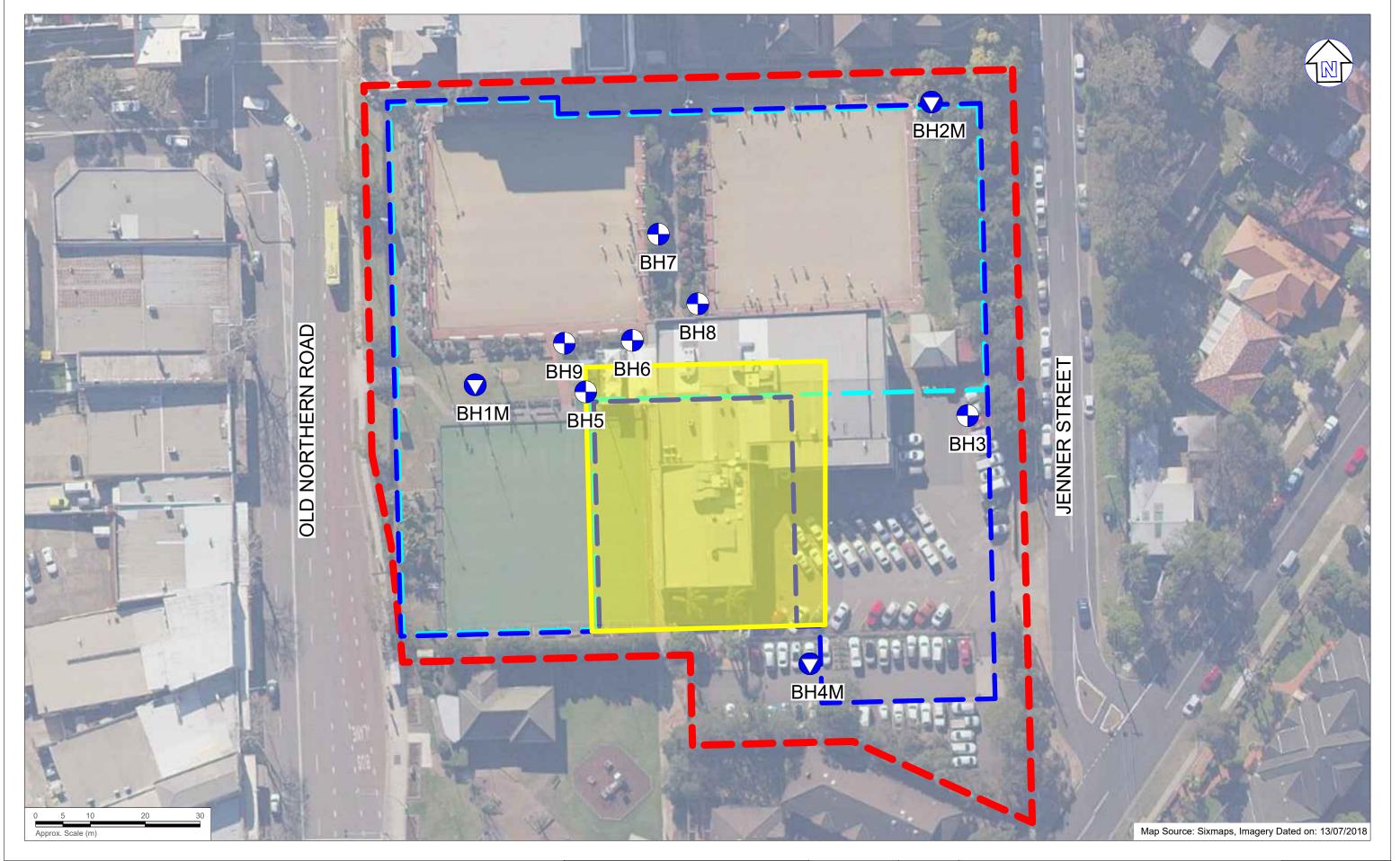
SEPP 55 (1997) State Environment Protection Policy 55, Remediation of Land under the Environmental Planning and Assessment Act 1997;

The Hills Local Environmental Plan 2019; and

US EPA (2006) Data Quality Assessment: A Reviewers Guide – EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

Abbreviations


ACM ASS	Asbestos-containing materials Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
B(a)P	Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CEC	Cation Exchange Capacity
COC	Chain of Custody
COPC	Contaminants of Potential Concern
CSM	Conceptual Site Model
DA	Development Application
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EI EIL	El Australia
ESL	Ecological Investigation Level Ecological Screening Level
EPA	Environment Protection Authority
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule
B1)	$11110_6 - 0_{10}$ less the sum of DTEX concentrations (i.e. ther in 2013, ochedule
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013,
Schedule B1	
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
HM	Heavy Metal
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
m	Metres
mAHD	Meters above Australian Height Datum
mBGL	Metres Below Ground Level
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council New South Wales
NSW OCP	Organochlorine Pesticides
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
OPP	Organophosphorus Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls
PFAS	Per- and poly-fluoroalkyl substances
PID	Photo-ionisation Detector
рН	Measure of the acidity or basicity of an aqueous solution



PSI	Preliminary Site Investigation
PSH	Phase-separated hydrocarbons (also referred to as LNAPL)
QA/QC	Quality Assurance / Quality Control
RL	Relative Level
SIL	Soil Investigation Levels
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UST	Underground Storage Tank
UPSS	Underground Petroleum Storage System
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A - Figures

LEGEND

- Approximate site boundary _ _
- Approximate basement 2 boundary
- Approximate basement 3 boundary
- Approximate undercover bowling green boundary
- Approximate borehole location
 - Approximate borehole/monitoring well location

Drawn:	L.Y.	Α
Approved:	-	
Date:	18/09/2020	

Arden Clubs on behalf of The Hills Club Preliminary Site Investigation The Hills Club, Baulkham Hills NSW

Borehole Location Plan

Figure:

Project: E24782.E01

Appendix B - Tables

Table B1 - Summary of Soil Analytical results

				Γ		Heavy	Metals	Γ	I			PA	lHs			ВТ	ΈX	Γ		TF	₹Н			Pesti	cides		Asbestos
Sample ID	Material	Date	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Carcinogenic PAHs (as Β(α)Ρ ΤΕQ)	Benzo(a) pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	VOCs	OCPs	Opps	Total PCBs	Presence / absence
BH1M_0.7-0.8	Fill	3/08/2020	8	<0.3	8.3	21	42	<0.05	4.6	26	8.1	5.6	63	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	100	<120	N.A.	<1	<1.7	<1	No
BH2M_0.1-0.2	Fill	4/08/2020	9	0.5	6.2	10	20	1.9	4	43	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	4	<1.7	<1	No
BH2M_4.5-4.6	Natural	4/06/2020	1	<0.3	2.4	12	12	< 0.05	1.4	8.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.	N.A.
BH3_0.2-0.3	Fill		11	<0.3	15	14	23	1	19	43	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	No
BH4_0.5-0.6	Fill		1	<0.3	4.8	30	10	<0.05	36	17	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	No
BH4_5.0-5.5	Natural		7	<0.3	6	39	25	<0.05	23	150	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<pql< td=""><td><1</td><td><1.7</td><td><1</td><td>N.A.</td></pql<>	<1	<1.7	<1	N.A.
BH5_0.1-0.2	Fill		5	<0.3	8.6	20	14	0.68	3.2	39	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	No
BH5_0.7-0.8	Natural	5/08/2020	9	<0.3	4.9	17	16	<0.05	<0.5	5.8	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.	N.A.
BH6_0.6-0.7	Fill	3/00/2020	7	<0.3	13	17	24	0.09	8.2	33	<0.3	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	No
BH7_1.0-1.1	Fill		9	<0.3	8.5	54	220	0.13	6.7	230	1.4	1	15	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	Yes
BH7_1.5-1.6	Natural		7	<0.3	11	14	23	< 0.05	1.2	7	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.	N.A.
BH8_0.1-0.2	Fill		35	0.5	10	30	130	0.99	4.7	160	0.8	0.5	9	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	No
BH9_0.1-0.2	Fill		9	<0.3	10	18	27	2.2	5.3	36	1.1	0.8	11	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	<1	<1.7	<1	No
												stical Analys															
Maximui	m concentration		35	0.5	15	54	220	2.2	36	230	8.1	5.6 SILs	63	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	100	<120	<lor< th=""><th>4</th><th><1.7</th><th><1</th><th>No</th></lor<>	4	<1.7	<1	No
				1	500		1	1	r			3113														,	
HIL B	- Residential		500	150	Cr(VI)	30,000	1,200	120	1,200	60,000	4		400											600		1	
							Source de	pths (0 m to	<1 m. BGL)		•			3	0.5	160	55	40	45	110							
HSL A & B - Low	to high density residential						Source de	pths (1 m to	<2 m. BGL)					NL	0.5	220	NL	60	70	240							Presence /
Soil texture c	lassification – Sand ¹						Source de	epths (2m to -	<4 m. BGL)					NL	0.5	310	NL	95	110	440							Absence
							Sou	rce depths (4	↓ m+)					NL	0.5	540	NL	170	200	NL							
EILs / ESLs - Urban Resid	ential and Public Open Space	1 2	100		408	150	1,100		245	495				170	50	85	70	105	180	120	300	2800		180			
CRC Care - High Reliability E	cological Criteria for Benzo(a)	pyrene										33						•									
Management Limits – Resider	tial, parkland and public open	space ¹																	700	1,000	2,500	10,000					

Notes:

All results are recorded in mg/kg (unless otherwise stated)

Highlighted values indicates concentration exceeds Human Health Based Soil Criteria (HIL B / HSL A & B)

HIL B

HSL A&B NA

NL

1

2

F4

F1 F2

F3

Highlighted indicates criteria exceeded

NEPC 1999 Amendment 2013 'HIL B' Health Based Investigation Levels applicable for residential exposure settings with minimal opportunities for garden soil access.

NEPC 1999 Amendment 2013 'HSL A&B' Health Based Screening Levels based on vapour intrusion values applicable for low to high density residential settings.

'Not Analysed' i.e. the sample was not analysed.

'Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical.

Majority of the fill to be found as sandy material. Therefore, coarse grained soil (sand) values were applied.

Licriteria is derived from a site specific Added Contaminant Limit (ACL) with the Ambient Background Concentration (ABC) for an old NSW and low traffic suburb. In lack of physiochemical properties for soils across the site, a site specific ACL criteria for heavy metals based on averaged physiochemical properties presented in Chapman and Murphy (1989) for the Blacktown (bt) soil landscape.

To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

To obtain F2 subtract Naphthalene from the >C10-C16 fraction.

(>C16-C34)

(>C34-C40)

E24782 - Baulkham Hill

Table B2 – Summary of Groundwater Investigation Results

Table B2 - Summary of Groun						Heavy	Metals					PAHs			BT	EX			VC)Cs			TR	Hs	
Sample Identific	ation	Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(ɑ)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	xylene	Chloroform (THM)	1,3,5-trimethylbenzene	1,2,4-trimethylbenzene	Total VOC	F1	F2	F3	F4
BH1M			<1	<0.1	<1	5	<1	<0.1	7	69	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<1.5	<0.5	<0.5	<0.5	<10	<50	<60	<500	<500
BH2M		14/08/2020	6	0.3	27	96	37	<0.1	24	170	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<1.5	<0.5	<0.5	<0.5	<10	<50	290	<500	<500
BH4M			4	<0.1	4	1	2	<0.1	3	28	<1	<0.1	0.3	<0.5	1.7	0.5	8	7.2	1.5	3.4	25	66	<60	<500	<500
GILs																									
HSL D for	Commercial/Industrial ⁴												NL	30000	NL	NL	NL					NL	NL		
HSL - C Rec	creational / Open Space	4											NL	NL	NL	NL	NL					NL	NL		
GIL	Marine	Water ³		0.7	4.4(Cr IV)	1.3	4.4	0.1 ²	7	15 ¹			50 ¹	500 ¹	180 ⁶	5 ⁶						50 ⁵	60 ⁵	500 ⁵	500 ⁵
Rec	reational Water ⁷		100	20	50 ⁸	1000	100	10	200	3000		0.01		10	8000	3000	6000								

Notes:

All values are µg/L unless stated otherwise

NL = Not Limiting

NA = 'Not Analysed' i.e. the sample was not analysed.

F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

F3 (>C16-C34)

F4 (>C34-C40)

1 = Figure may not protect key species from chronic toxicity, refer to ANZG 2018 for further guidance

2 = Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG 2018 for further guidance

3 = NEPM (2013) Groundwater Investigation Levels for marine water quality, based on ANZG 2018.

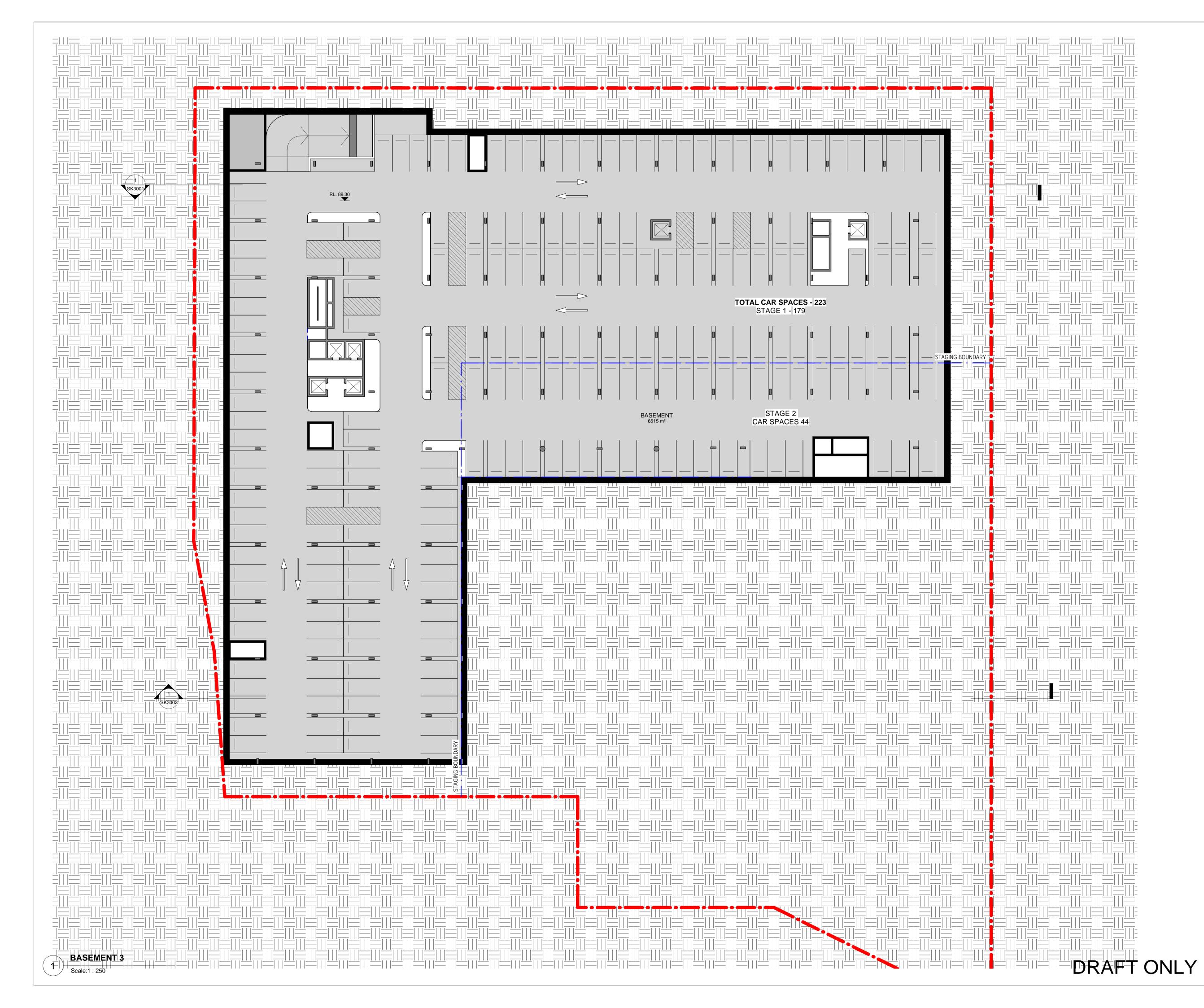
4 = NEPM (2013) Table 1A(4) Groundwater HSL C and D for vapour intrusion at the contaminant source depth ranges in clay 2m to <4m, as a conservative approach.

5 = In lack of a criteria the laboratory PQL has been used (DEC, 2007).

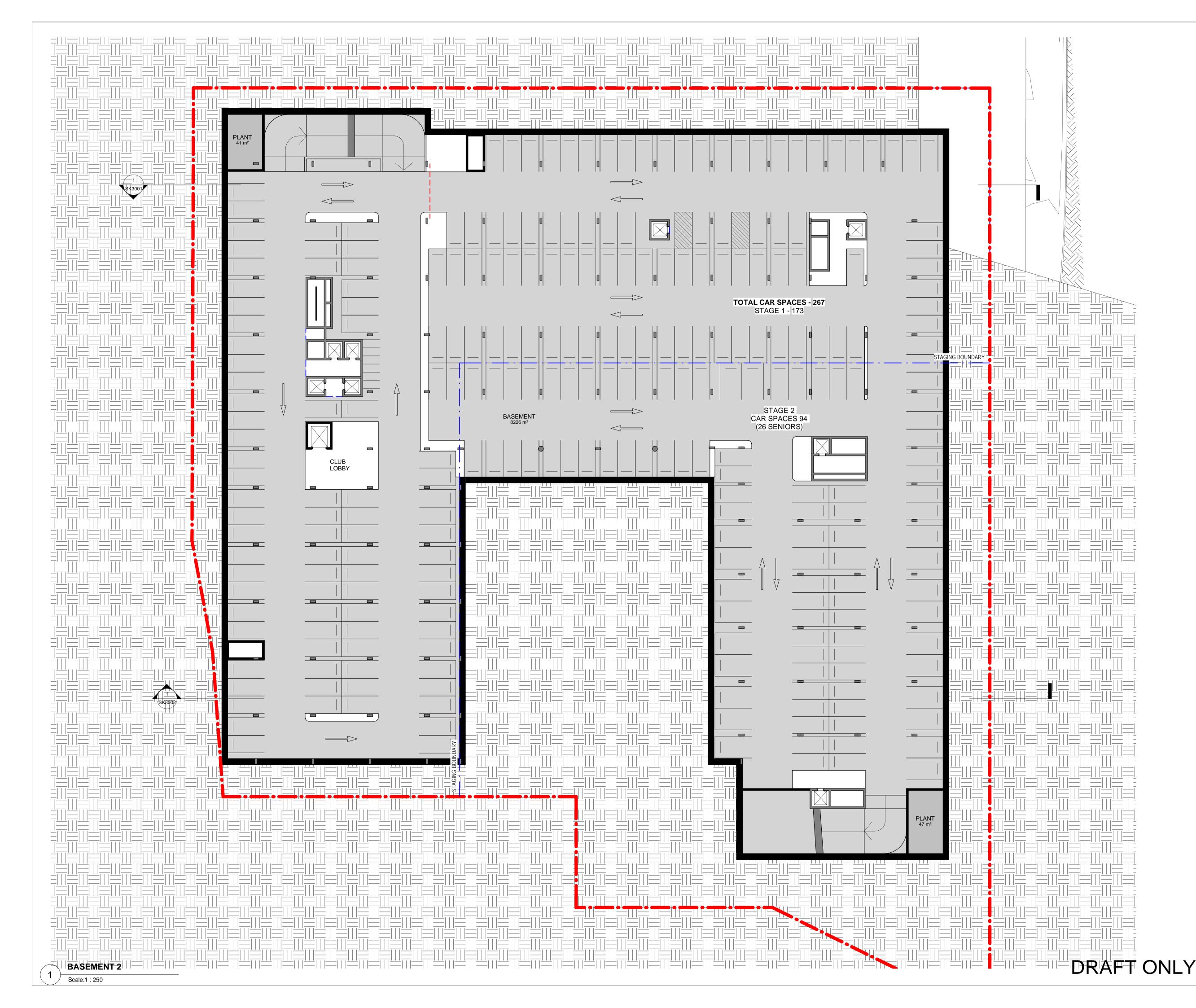
6 = Low reliability toxicity data, refer to ANZG 2018

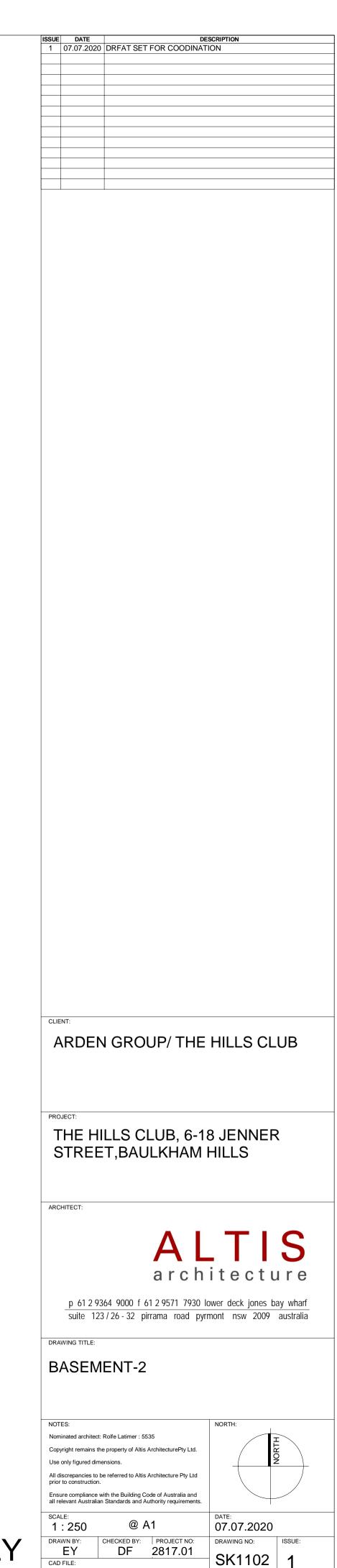
7 = Based on NHMRC (2017) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria.

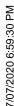
8= ANZECC/ARMCANZ (2000) Recreational Criteria utilised were NHMRC (2017) does not provide criteria.

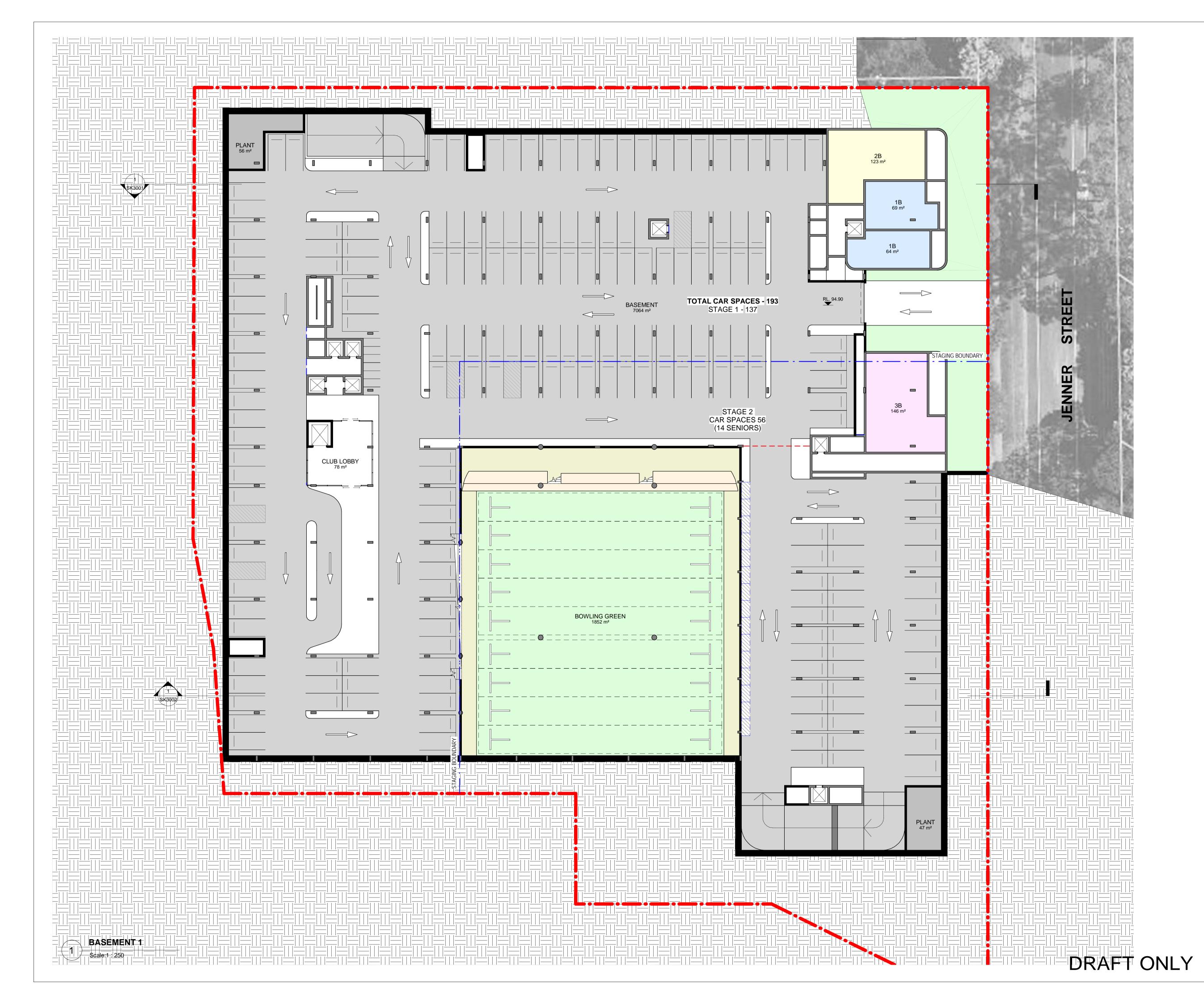

Highlighted Indicates concentration value exceeding the Groundwater Investigation Level for Marine Water

Highlighted indicates criteria exceeded

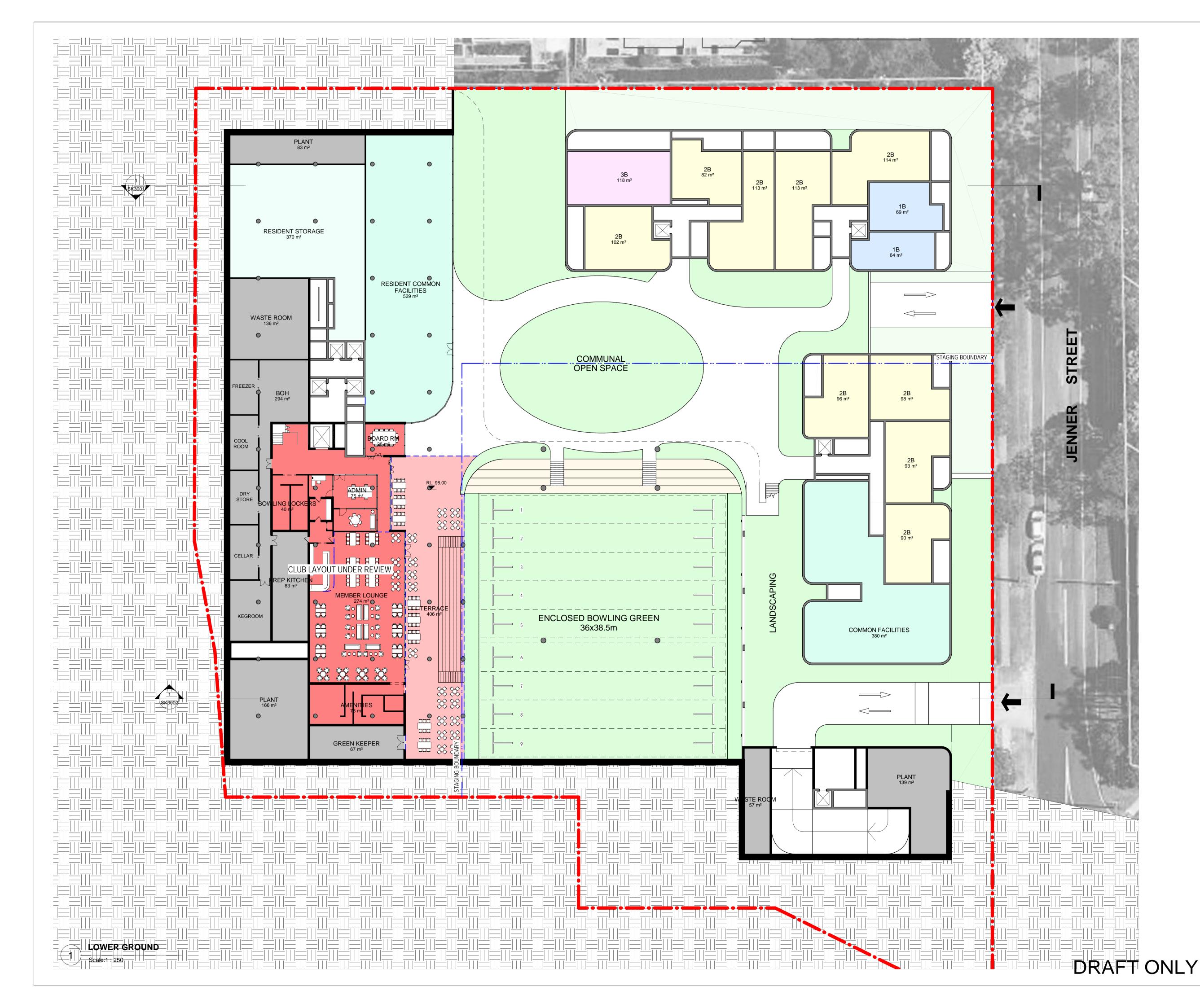



Appendix C – Proposed Development Plans





ISSUE 1		DRFAT SET FOR COODINATI	SCRIPTION ON	
CLIE	-NT·			
		I GROUP/ THE	HILLS CL	UB
	HE HI	LLS CLUB, 6-18	B JENNER	2
S	STREE	T,BAULKHAM I	HILLS	
ARC	HITECT:			
		AL	TI.	S
	(1.0.00	arch	itectu	ıre
		64 9000 f 61 2 9571 7930 lc 8/26-32 pirrama road pyrr		
	WING TITLE:	ENT-3		
	inated architect:	Rolfe Latimer : 5535 e property of Altis ArchitecturePty Ltd.	NORTH:	
All d prior	to construction.	e referred to Altis Architecture Pty Ltd		2
all re SCA	elevant Australian	ith the Building Code of Australia and Standards and Authority requirements. @ A1	DATE: 07.07.2020	
	WN BY:	CHECKED BY: PROJECT NO: DF 2817.01	DRAWING NO:	ISSUE: 1
				<u> </u>



CLIE						
		I GRO	UP/ TH	IE HIL	LS CL	UB
		I GRO	UP/ TH	ie Hil	LS CL	UB
A PRO T	RDEN Ject: HE HI	LLS C	LUB, 6	5-18 JE	ENNER	
A PRO T	RDEN Ject: HE HI	LLS C		5-18 JE	ENNER	
PRO T S	RDEN Ject: HE HI	LLS C	LUB, 6	5-18 JE	ENNER	
PRO T S	RDEN Ject: HE HI STREE	LLS C	LUB, 6 JLKHA	5-18 JE M HIL	ENNEF	2
PRO T S	RDEN Ject: HE HI STREE	LLS C	LUB, 6 JLKHA	5-18 JE M HIL	ENNER	° S
PRO T S	RDEN JECT: HE HI STREE	LLS C T,BAU	LUB, 6 JLKHA	5-18 JE M HIL	ENNER LS E C T L eck jones ba	s S ire ay wharf
PRO T S	RDEN JECT: HEHI STREE HITECT: <u>p 61 2 93</u> Suite 123 WING TITLE:	LLS C T,BAU	LUB, 6 JLKHA	5-18 JE M HIL	ENNER LS E C T L eck jones ba	s S ire ay wharf
PRO T S	ARDEN	LLS C T,BAU	LUB, 6 JLKHA	5-18 JE M HIL	ENNER LS E C T L eck jones ba	s S ire ay wharf
PRO T S DRA BA	ARDEN	LLS C T,BAU	LUB, 6 JLKHA A a r c 51 2 9571 79 irrama road	5-18 JE M HIL	ENNER LS ectu eck jones br nsw 2009	S Ire australia
PRO T S ARC DRA BA NOT Nom Copy Use	ARDEN	LLS C T,BAU	LUB, 6 JLKHA Arc 31 2 9571 79 irrama road	5-18 JE M HIL h i t ^{30 lower d} pyrmont	ENNER LS C L eck jones bansw 2009	S Ire australia
PRO T S ARC DRA B ARC DRA ARC	ARDEN	LLS C T,BAU	LUB, 6 JLKHAI	5-18 JE M HIL h i t 30 lower d pyrmont	ENNER LS ectu eck jones br nsw 2009	S Ire australia
PRO PRO T S ARC DRA BA ARC ARC ARC ARC ARC ARC ARC ARC ARC AR	ARDEN JECT: HEHI STREE PITECT: P 61 2 93 Suite 123 VING TITLE: ASEM ES: inated architect: right remains the only figured dime screpancies to b to construction. IF compliance w levant Australian LE: : 250	LLS C T,BAU	LUB, 6 JLKHA	5-18 JE M HIL M HIL h i t 30 lower d pyrmont d td.	ENNER LS ectu eck jones ba nsw 2009	S Ire australia

 ISSUE
 DATE
 DESCRIP

 1
 07.07.2020
 DRFAT SET FOR COODINATION

DESCRIPTION

	07.07.2020 DRFAT SET FOR COODINATION	
CLIE	NT-	
	RDEN GROUP/ THE HILLS CLUB	
7		
	THE HILLS CLUB, 6-18 JENNER	
S	STREET, BAULKHAM HILLS	
	HITECT:	
AP.21		
ARCI		
ARCI		
ARCI	A L T I S	
ARCI	architecture	
ARCI		
	p 61 2 9364 9000 f 61 2 9571 7930 lower deck jones bay wharf suite 123 / 26 - 32 pirrama road pyrmont nsw 2009 australia	
DRA	p 61 2 9364 9000 f 61 2 9571 7930 lower deck jones bay wharf	

Copyright remains the property of Altis ArchitecturePty Ltd.

All discrepancies to be referred to Altis Architecture Pty Ltd prior to construction.

Ensure compliance with the Building Code of Australia and all relevant Australian Standards and Authority requirements.

@ A1

 CHECKED BY:
 PROJECT NO:

 DF
 2817.01

07.07.2020

SK1104 **1**


ISSUE

DRAWING NO:

Use only figured dimensions.

1 : 250

DRAWN BY: EY CAD FILE:

ISSUE		DESCRIPTION
1	07.07.2020	DRFAT SET FOR COODINATION

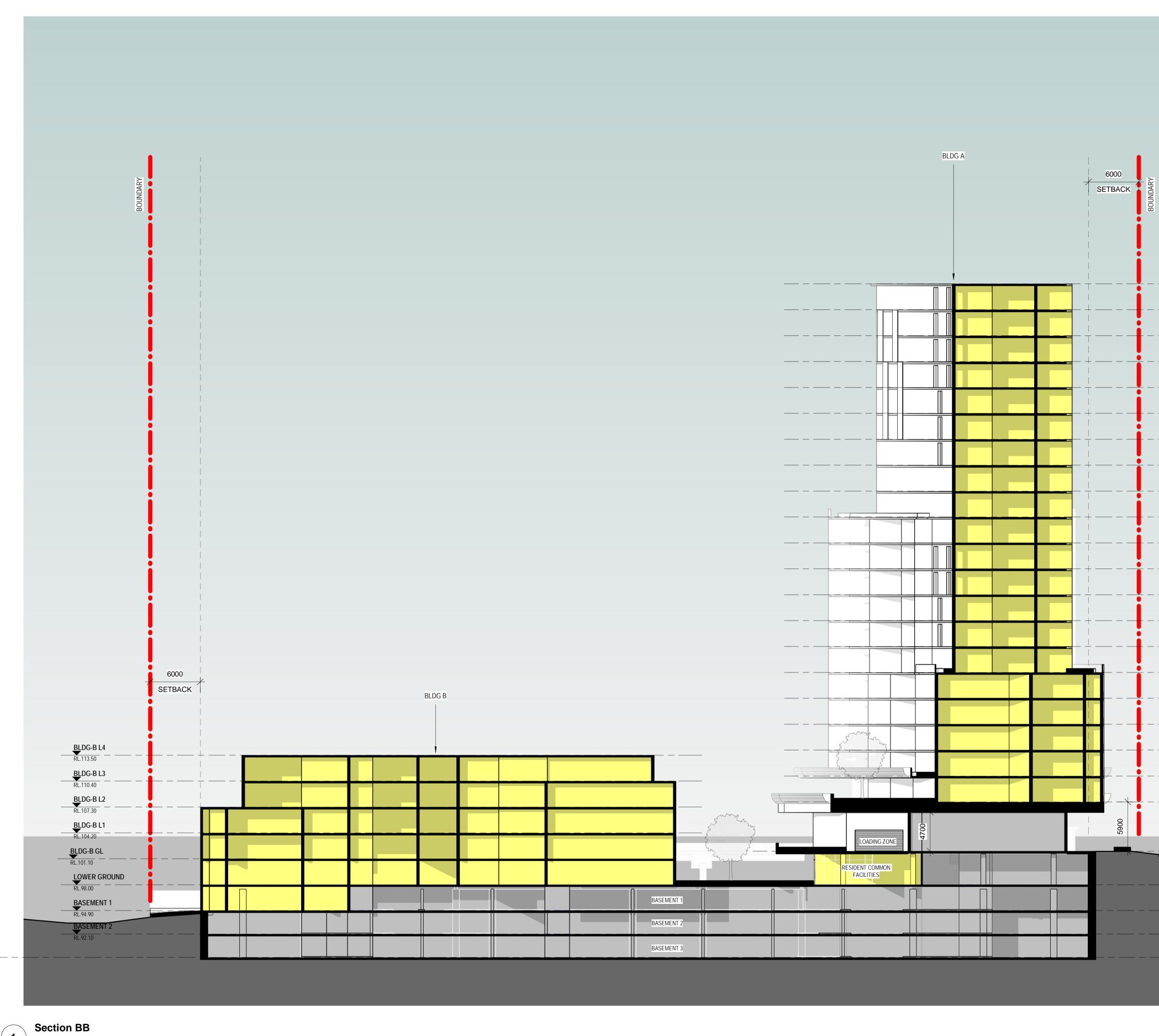
ARDEN GROUP/ THE HILLS CLUB

THE HILLS CLUB, 6-18 JENNER STREET,BAULKHAM HILLS

ARCHITECT:

DRAWING TITLE:

PROJECT:


CLIENT:

p 61 2 9364 9000 f 61 2 9571 7930 lower deck jones bay wharf suite 123 / 26 - 32 pirrama road pyrmont nsw 2009 australia

GROUND FLOOR PLAN

NOTES:			NORTH:			
Nominated architec	t: Rolfe Latimer : 55	35		T		
Copyright remains	the property of Altis	ArchitecturePty Ltd.				
Use only figured dir	mensions.			ž		
All discrepancies to prior to constructior		Architecture Pty Ltd				
		ode of Australia and uthority requirements.				
SCALE:			DATE:			
1 : 250	@ A	\1	07.07.2020			
DRAWN BY:	CHECKED BY:	PROJECT NO:	DRAWING NO:	ISSUE:		
EY	DF	2817.01				
CAD FILE:			SK1105	1		

(1 Scale:1 : 250

DRAFT ONL

ROOF TOP RL.169.90

BLDG-A 20 RL.166.80

BLDG-A L18 RL.160.60

BLDG-A L11 RL.138.90

BLDG-A L10

BLDG-A L9 RL.132.70

BLDG-A L8 RL.129.60

BLDG-A L7 RL.126.50

BLDG-AL6 RL.123.40

BLDG-A L5 RL.120.30

BLDG-A L4 RL.117.20

BLDG-A L3 RL.114.10

BLDG-A L2 RL.111.00

GROUND FLOOR

LOWER GROUND RL.98.00

BASEMENT 1 RL.94.90

BASEMENT 2 RL.92.10

BASEMENT 3 RL.89.30

_____ RL.135.80

	1				
CLI	ENT:				
		I GROUF	9/ THE	HILLS C	LUB
		I GROUF	9/ THE	HILLS C	LUB
PR					
PR	ARDEN DJECT: THE HI	I GROUF	JB, 6-1	8 JENNE	
PR	ARDEN DJECT: THE HI	LLS CLU	JB, 6-1	8 JENNE	
PR	ARDEN DJECT: THE HI	LLS CLU T,BAULI	IB, 6-1 KHAM	8 JENNE HILLS	ĒR
PR	ARDEN DJECT: THE HI STREE	LLS CLU	ив, 6-1 КНАМ	8 JENNE HILLS	ER I S
PRI	ARDEN OJECT: THE HI STREE	LLS CLU T,BAUL	IB, 6-1 KHAM	8 JENNE HILLS itect	R I S u r e
PRI -	ARDEN	LLS CLU	UB, 6-1 KHAM CHAM rch	8 JENNE HILLS i t e c t	R IS ure s bay wharf
	ARDEN	LLS CLU T,BAULH a <u>64 9000 f 61 2</u> 3/26 - 32 pirram	UB, 6-1 KHAM CHAM C r c h 2571 7930 10 a road pyr	8 JENNE HILLS itect	R IS ure s bay wharf
PRI -	ARDEN	LLS CLU T,BAULH a	UB, 6-1 KHAM CHAM C r c h 2571 7930 10 a road pyr	8 JENNE HILLS itect	R IS ure s bay wharf
PRI - C	ARDEN	LLS CLU T,BAULH a <u>64 9000 f 61 2</u> 3/26 - 32 pirram	UB, 6-1 KHAM CHAM C r c h 2571 7930 10 a road pyr	8 JENNE HILLS itect	R IS ure s bay wharf
	ARDEN	LLS CLU T,BAULH a 364 9000 f 61 2 3726 - 32 pirram SED SE SED SE Rolfe Latimer : 5535 e property of Altis Archit ensions.	B, 6-1 AAM AL rch 9571 7930 k a road pyri CTION	8 JENNE HILLS itect ower deck jones mont nsw 200	R IS ure s bay wharf
PRI PRI ARI	ARDEN DJECT: THE HI STREE CHITECT: PROPO TES: minated architect: pyright remains the e only figured dime discrepancies to b or to construction. sure compliance w	LLS CLU T,BAULH a a <u>64 9000 f 61 2</u> 3/26 - 32 pirram SED SE SED SE Rolfe Latimer : 5535 e property of Altis Archit	B, 6-1 HAM CHAM CTION CTION ecture Pty Ltd. a road pyri	8 JENNE HILLS itect ower deck jones mont nsw 200	R IS ure s bay wharf
PRI PRI ARI	ARDEN DJECT: THE HI STREE CHITECT: PROPO TES: minated architect: pyright remains the a only figured dime discrepancies to b or to construction. sure compliance w relevant Australian ALE: 1 250	LLS CLU T,BAULH a a 64 9000 f 61 2 3 / 26 - 32 pirram SED SEC SED SEC Rolfe Latimer : 5535 e property of Altis Archit ansions. e referred to Altis Archit in the Building Code of a Standards and Authori in Standards and Authori	B, 6-1 HAM CHAM CTION CTION ecture Pty Ltd. a road pyri	8 JENNE HILLS itect ower deck jones mont nsw 200	ER ISURE s bay wharf 9 australia

 ISSUE
 DATE
 DESCRIPTION

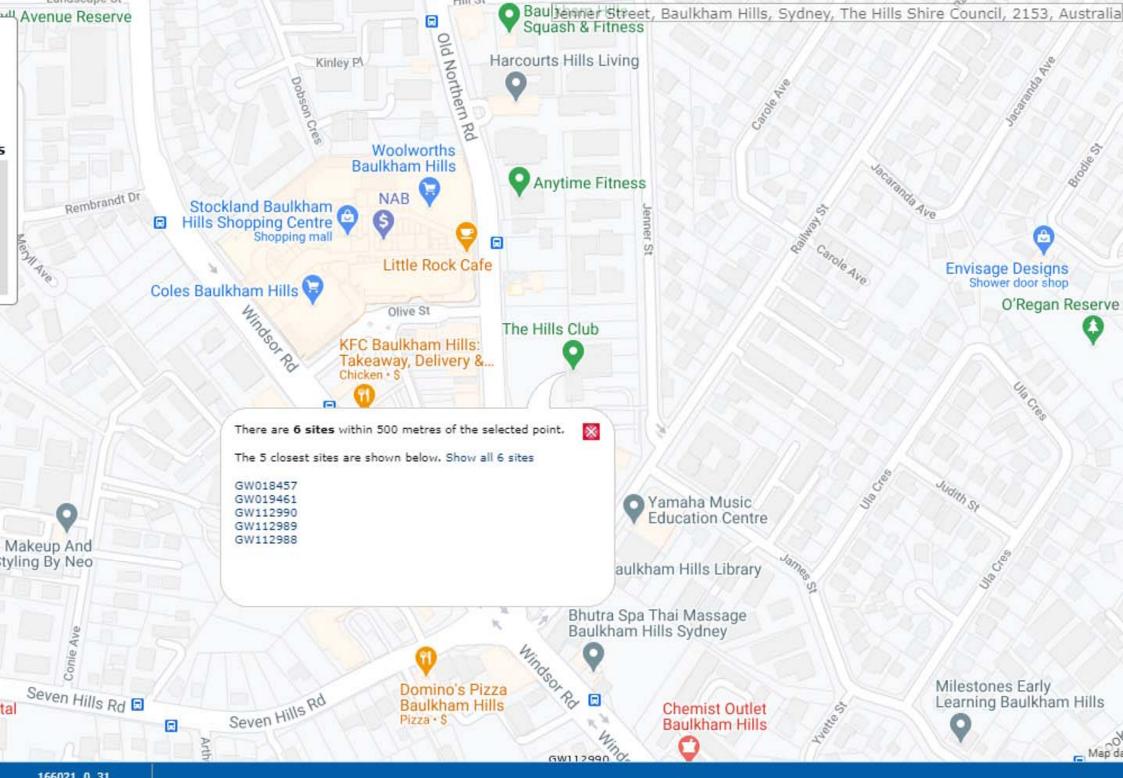
 1
 07.07.2020
 DRFAT SET FOR COODINATION

Appendix D – Site Photograph

Photograph 1: Car park area, looking south.

Photograph 2: Site condition, looking south.

Photograph 3 Site condition during drilling, looking west.



Photograph 4: Site condition, looking east.

Appendix E – Groundwater Bore Search

166021, 0, 31

GW018457

Licence:		Licence Status:		
		Authorised Purpose(s): Intended Purpose(s): WA	STE DISPOSAL	
Work Type:	Bore open thru rock			
Work Status:				
Construct.Method:	Cable Tool			
Owner Type:	Private			
Commenced Date: Completion Date:		Final Depth: 52.4 Drilled Depth: 52.4		
Contractor Name:	(None)			
Driller:				
Assistant Driller:				
Property: GWMA: GW Zone:		Standing Water Level (m): Salinity Description: Salt Yield (L/s):	у	
ite Details				
Site Chosen By:				
		County Form A: CUMBERLAND Licensed:		adastre 14
Region: 10	- Sydney South Coast	CMA Map: 9030-2N		
	3 - SYDNEY COAST - GEORGES /ER	Grid Zone:	Scale:	
Alca District.				
Elevation: 0.0	0 m (A.H.D.)	Northing: 6262448.000 Easting: 314034.000	Latitude: 33 Longitude: 15	
Elevation Source: (Ur	INTOWIT)		9	

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pip	pe	Component	Туре	From (m)	-		Inside Diameter (mm)	Interval	Details
	1	1	Casing	Threaded Steel	0.00	6.00	152			

Water Bearing Zones

From (m)	To (m)	Thickness (m)	21.1	S.W.L. (m)	(L/s)	Hole Depth (m)	 Salinity (mg/L)
19.80	52.40	32.60	Fractured	1.20	0.32		

Drillers Log

From (m)	-	Thickness (m)	Drillers Description	Geological Material	Comments
0.00	19.81	19.81	Shale Sandy	Shale	
19.81	52.42	32.61	Shale Water Supply	Shale	

Remarks

07/08/1974: SITE SEVEN HILLS/WINDSOR RD 2153

GW019461

Licence:				
		Licence Status:		
		Authorised Purpose(s): Intended Purpose(s): WAS	TE DISPOSAL	
Work Type:	Bore open thru rock			
Work Status:				
Construct.Method:	Cable Tool			
Owner Type:	Private			
Commenced Date: Completion Date:		Final Depth: 52.40 Drilled Depth: 52.40		
Contractor Name:	(None)			
Driller:				
Assistant Driller:				
Property: GWMA: GW Zone:		Standing Water Level (m): Salinity Description: Salty Yield (L/s):		
ite Details				
Site Chosen By:				
Site Chosen By:		County Form A: CUMBERLAND Licensed:	Parish CASTLE HI	Cadastre 114
	- Sydney South Coast	Form A: CUMBERLAND		
Region: 10 River Basin: 213	- Sydney South Coast 3 - SYDNEY COAST - GEORGES /ER	Form A: CUMBERLAND Licensed:		114
Region: 10 River Basin: 213 RIV	3 - SYDNEY COAST - GEORGES /ER 0 m (A.H.D.)	Form A: CUMBÉRLAND Licensed: CMA Map: 9030-2N	CASTLE HI Scale: Latitude:	114

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

F	lole	Pipe	Component	Туре	From (m)	To (m)		Inside Diameter (mm)	Interval	Details
	1	1	Casing	Threaded Steel	0.00	6.00	152			

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	(L/s)	Hole Depth (m)	 Salinity (mg/L)
19.8	0 52.40	32.60	Fractured	1.20	10.10		

Drillers Log

From (m)	-	Thickness (m)	Drillers Description	Geological Material	Comments
0.00	19.81	19.81	Shale Sandy	Shale	
19.81	52.42	32.61	Shale Water Supply	Shale	

Remarks

07/08/1974: SITE SEVEN HILLS/WINDSOR RD 2153

GW112988

Licence:		Licence Status:		
		Authorised Purpose(s): Intended Purpose(s): M	ONITORING BORE	
Work Type: E	Bore			
Work Status: E	Equipped			
Construct.Method:				
Owner Type: F	Private			
Commenced Date: Completion Date: 1	8/10/2002	Final Depth: 7.5 Drilled Depth: 7.5		
Contractor Name: (None)			
Driller: L	Jnkown Unknown			
Assistant Driller:				
Property:		Standing Water Level		
GWMA: GW Zone:		(m): Salinity Description: Yield (L/s):		
Site Details				
Site Chosen By:				
		County Form A: CUMBERLAND Licensed:	Parish CASTLE HI	Cadastre 20 26746

Region: 10 - Sydney South Coast River Basin: - Unknown Area/District:	CMA Map: Grid Zone:	Scale:
Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown	Northing: 6262276.000 Easting: 314234.000	Latitude: 33°45'48.0"S Longitude: 150°59'38.8"E
GS Map: -	MGA Zone: 56	Coordinate Source: Unknown

Remarks

23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.

*** End of GW112988 ***

Warning To Clients: This raw data has been supplied to the WaterNSW by drillers, licensees and other sources. WaterNSW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

GW112989

Licence:		Licence Status:		
		Authorised Purpose(s): Intended Purpose(s): MC	NITORING BORE	
Work Type:	Bore			
Work Status:	Equipped			
Construct.Method:				
Owner Type:	Private			
Commenced Date: Completion Date:	18/02/2002	Final Depth: 6.8 Drilled Depth: 6.8		
Contractor Name:	(None)			
Driller:	Unkown Unknown			
Assistant Driller:				
Property:		Standing Water Level (m):		
GWMA: GW Zone:		Salinity Description: Yield (L/s):		
Site Details				
Site Chosen By:				
		County Form A: CUMBERLAND Licensed:	Parish CASTLE HI	Cadastre 20 28197

Region: 10 - Sydney South Coast River Basin: - Unknown Area/District:	CMA Map: Grid Zone:	Scale:
Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown	Northing: 6262278.000 Easting: 314222.000	Latitude: 33°45'48.0"S Longitude: 150°59'38.3"E
GS Map: -	MGA Zone : 56	Coordinate Source: Unknown

Remarks

23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.

*** End of GW112989 ***

Warning To Clients: This raw data has been supplied to the WaterNSW by drillers, licensees and other sources. WaterNSW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

GW112990

Licence:		Licence Status:		
		Authorised Purpose(s): Intended Purpose(s): MO	NITORING BORE	
Work Type:	Bore			
Work Status:	Equipped			
Construct.Method:				
Owner Type:	Private			
Commenced Date: Completion Date:	18/10/2002	Final Depth: 9.9 Drilled Depth: 9.9		
Contractor Name:	(None)			
Driller:	Unkown Unknown			
Assistant Driller:				
Property:		Standing Water Level (m):		
GWMA: GW Zone:		Salinity Description: Yield (L/s):		
Site Details				
Site Chosen By:				
		County Form A: CUMBERLAND Licensed:	Parish CASTLE HI	Cadastre 20 28197

Region: River Basin: Area/District:	• · · · · · · · · · · · · · · · · · · ·	CMA Map: Grid Zone:		Scale:	
Elevation: Elevation Source:	0.00 m (A.H.D.) Unknown		6262290.000 314234.000		33°45'47.6"S 150°59'38.8"E
GS Map:	-	MGA Zone:	56	Coordinate Source:	Unknown

Remarks

23/07/2014: Nat Carling, 23-July-2014; Added status, drill method & depth, updated work type.

*** End of GW112990 ***

Warning To Clients: This raw data has been supplied to the WaterNSW by drillers, licensees and other sources. WaterNSW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Appendix F – Historical Properties Titles

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

Address: - The Hills Bowling Club, Baulkham Hills

<u>Description: - Lots 39 to 45 Section 2 D.P. 2489, Lot Z D.P. 400638 & Lot 4 D.P. 1108855</u> (Lot 4 D.P. 1108855 is limited to a depth of 50 feet)

As regards Lots 39 to 45 Section 2 D.P. 2489

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
28.10.1924 (1924 to 1928)	Jane Tanner (Married Woman)	Vol 1421 Fol 152 & Vol 2292 Fol 163
27.06.1928 (1928 to 1939)	Ernest Felix Holmes (Grazier) (& His deceased estate)	Vol 1421 Fol 152 & Vol 2292 Fol 163
22.08.1939 (1939 to 1946)	Alfred Victor Lord (Grazier) Edna Frances Lord (Married Woman)	Vol 1421 Fol 152 Now Vol 5721 Fol 34 & Vol 2292 Fol 163
22.01.1946 (1946 to 1952)	Rupert Sidney Cropley (Gentleman) William Spriggs (Gentleman)	Vol 5721 Fol 34 Now Vol 5901 Fol 122 & Vol 2292 Fol 163
15.12.1952 (1952 to 1952)	Alice Louisa Spriggs (Widow) (Transmission Application not investigated)	Vol 5901 Fol 122 & Vol 2292 Fol 163
15.12.1952 (1952 to 1953)	David William Reed (Stipendiary Magistrate) Barclay Thomson Wright (Retired)	Vol 5901 Fol 122 & Vol 2292 Fol 163 Now Vol 6621 Fol 118
04.12.1953 (1953 to 1971)	Victor Thomas Ackling (Produce Merchant) Henry Francis Allen (Master Electroplater)	Vol 6621 Fol 118
20.08.1971 (1971 to date)	# The Hills District Bowling Club Limited	Vol 6621 Fol 118 Now Auto Consol 6621-118

Denotes Current Registered Proprietor

Easements and Leases: -NIL

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot Z D.P. 400638

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
28.10.1924 (1924 to 1928)	Jane Tanner (Married Woman)	Vol 1421 Fol 152
28.10.1924 (1924 to 1928)	Jane Tanner (Married Woman)	Vol 1421 Fol 152
27.06.1928 (1928 to 1939)	Ernest Felix Holmes (Grazier) (& His deceased estate)	Vol 1421 Fol 152
22.08.1939 (1939 to 1952)	Alfred Victor Lord (Grazier) Edna Frances Lord (Married Woman)	Vol 1421 Fol 152 Now Vol 5901 Fol 135
24.07.1952 (1952 to 1957)	Leigha Eileen Shepherd Reid (Widow)	Vol 5901 Fol 135
27.08.1957 (1957 to 1996)	Alexander William Jackson (Project Engineer) Lorraine Mary Brown (Spinster) Now Lorraine Mary Jackson (Married Woman)	Vol 5901 Fol 135 Now Z/400638
17.04.1996 (1996 to date)	# The Hills District Bowling Club Limited	Z/400638

Denotes Current Registered Proprietor

Easements and Leases: -NIL

As regards Lot 4 D.P. 1108855 - limited to a depth of 50 feet

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
04.08.1903 (1903 to 1934)	Minister for Public Works	Vol 1483 Fol 148
04.08.1903 (1903 to 1934)	The Railway Commissioners of New South Wales Now Commissioner for Railways	Vol 1483 Fol 148
23.10.1934	Surrendered to the Crown	
02.11.1934	Reserved from Sale or Lease	Gazette
02.11.1934	Reserve R 64890 for Public Recreation	Gazette Revoked 31.01.1964
13.03.1964 (1964 to date)	# The Hills District Bowling Club Limited	Crown Tenure Special Lease 1961/9 Metropolitan Now 4/1108855

<u># Denotes Current Registered Proprietor</u>

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Leases: -NIL

Easements: -

• 29.12..1978 Easement for Transmission Line

Yours Sincerely Mark Groll 4 September 2020

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE -----3/9/2020 4:10PM

FOLIO: AUTO CONSOL 6621-118

LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
25/1/1993		CONSOL HISTORY RECORD CREATED FOR AUTO CONSOL 6621-118	
		PARCELS IN CONSOL ARE: 39-45/2/2489.	
13/7/1998	5120002	DISCHARGE OF MORTGAGE	
13/7/1998	5120003	DISCHARGE OF MORTGAGE	EDITION 1
18/6/1999	5911731	MORTGAGE	EDITION 2
9/9/2018	AN695392	DEPARTMENTAL DEALING	EDITION 3 CORD ISSUED
1/5/2020 1/5/2020	AQ70332 AQ70333		EDITION 4

*** END OF SEARCH ***

hills bowling

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: AUTO CONSOL 6621-118

LAND

SERVICES

_ _ _ _ _ _ _

SEARCH DATE	TIME	EDITION NO	DATE
3/9/2020	4:10 PM	4	1/5/2020

LAND

_ _ _ _

LAND DESCRIBED IN SCHEDULE OF PARCELS AT BAULKHAM HILLS LOCAL GOVERNMENT AREA THE HILLS SHIRE PARISH OF CASTLE HILL COUNTY OF CUMBERLAND PARISH OF FIELD OF MARS COUNTY OF CUMBERLAND TITLE DIAGRAM DP2489

FIRST SCHEDULE _____

THE HILLS DISTRICT BOWLING CLUB LIMITED

(T M437062)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 AQ70333 MORTGAGE TO NASR GROUP INVESTMENTS PTY LTD

NOTATIONS

UNREGISTERED DEALINGS: NIL

SCHEDULE OF PARCELS ------

LOTS 39-45 SEC. 2 IN DP2489.

*** END OF SEARCH ***

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

FOLIO: Z/400638

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 7458 FOL 130

LAND

REGISTRY

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
2/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
17/1/1990		CONVERTED TO COMPUTER FOLIC	FOLIO CREATED CT NOT ISSUED
24/7/1995	0404005	MORTGAGE	EDITION 1
17/4/1996	2090452 2090453 2090454	DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE TRANSFER	EDITION 2
18/6/1999	5911731	MORTGAGE	EDITION 3
9/9/2018	AN695392	DEPARTMENTAL DEALING	EDITION 4 CORD ISSUED
1/5/2020 1/5/2020	AQ70332 AQ70333	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 5

*** END OF SEARCH ***

hills bowling

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: Z/400638

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
3/9/2020	4:10 PM	5	1/5/2020

LAND

LOT Z IN DEPOSITED PLAN 400638 LOCAL GOVERNMENT AREA THE HILLS SHIRE PARISH OF FIELD OF MARS COUNTY OF CUMBERLAND TITLE DIAGRAM DP400638

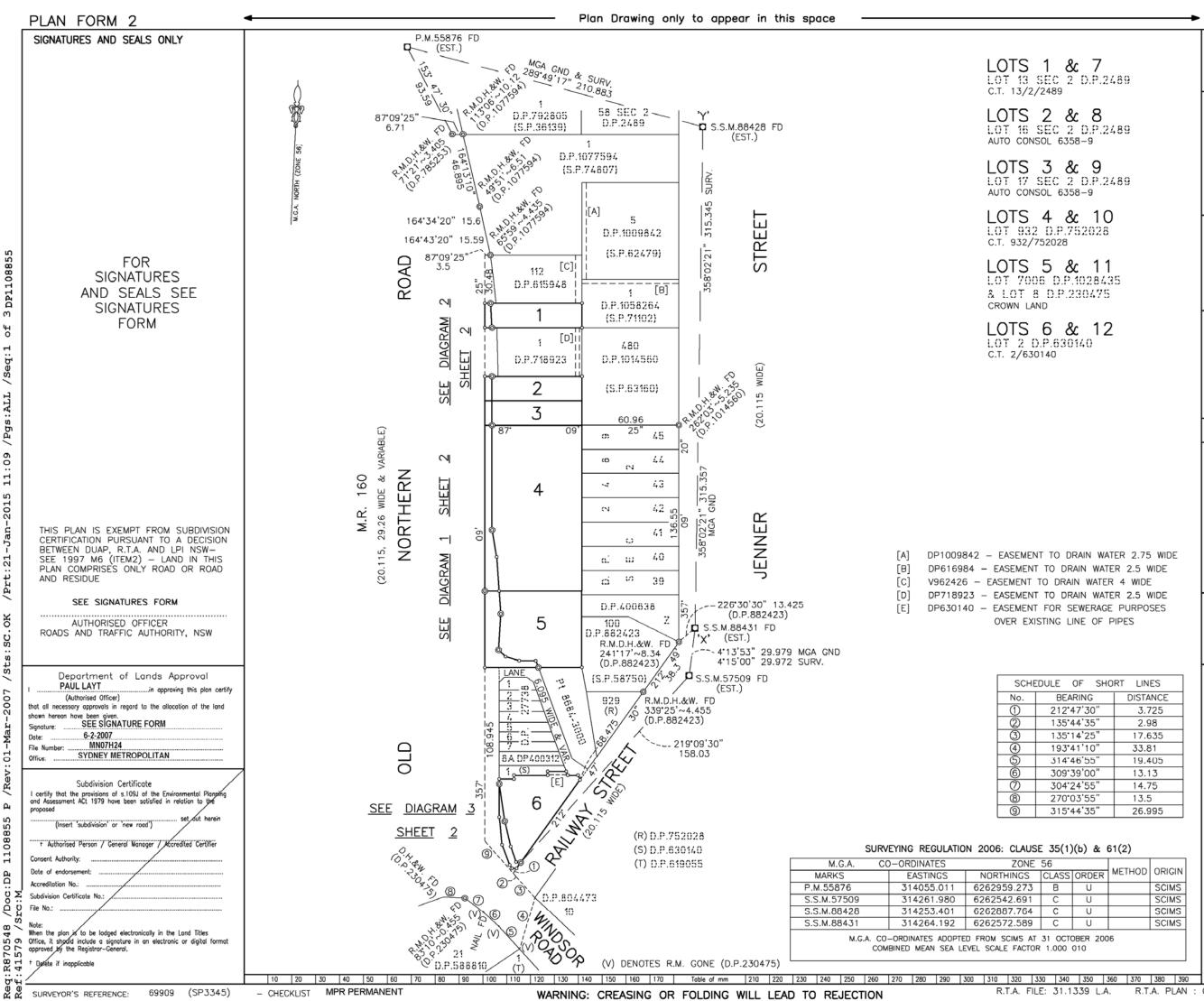
FIRST SCHEDULE _____

THE HILLS DISTRICT BOWLING CLUB LIMITED

(T 2090454)

SECOND SCHEDULE (2 NOTIFICATIONS)

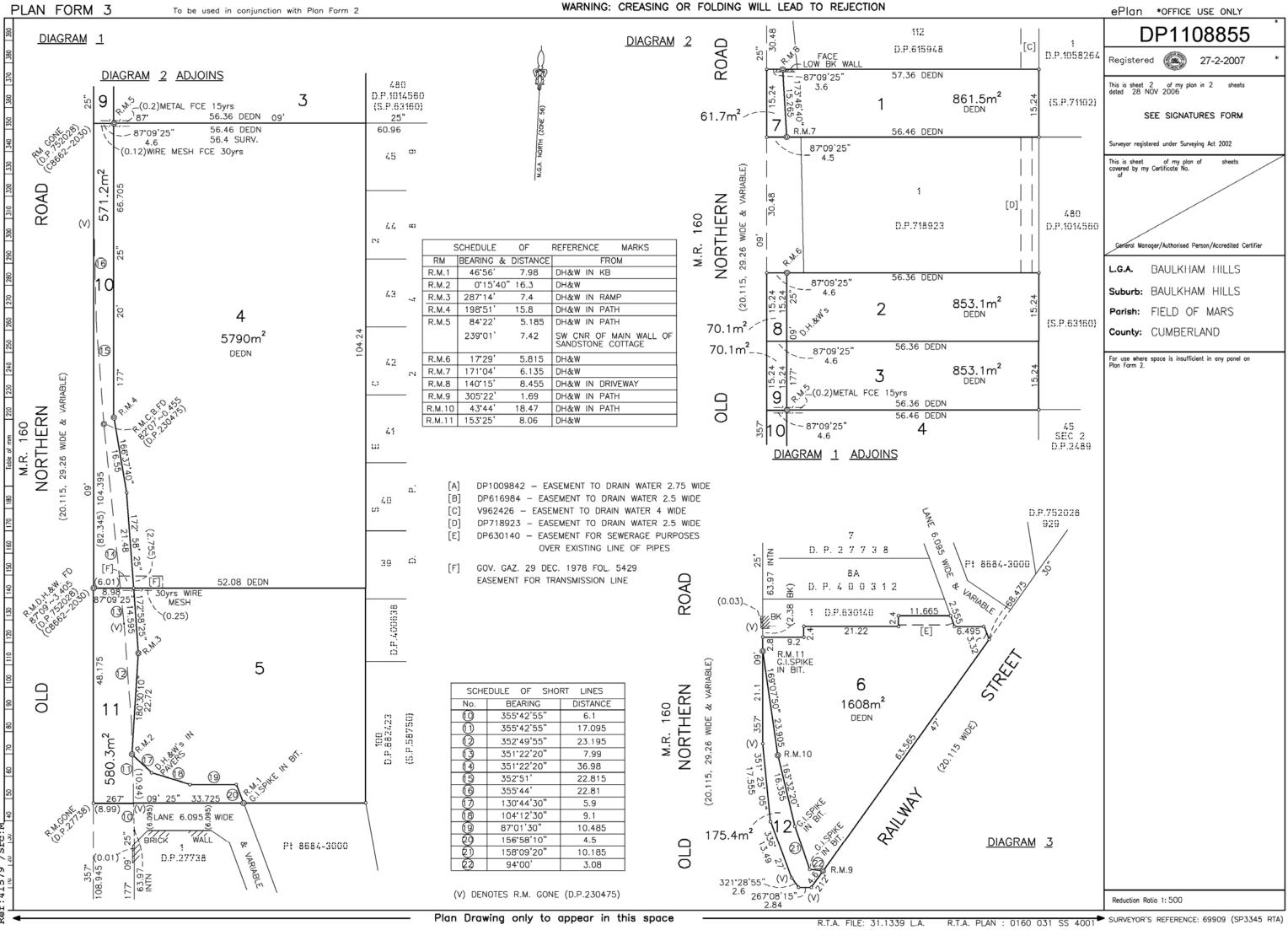
- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1
- 2 AQ70333 MORTGAGE TO NASR GROUP INVESTMENTS PTY LTD


NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.



7).P.2	489		DP1108855	_
8 .P.2 .9 9 .P.2			Registered: 27.2.2007 * Title System: TORRENS & CROWN LAND Purpose: ACQUISITION Ref. Map: U90160-64 [#]	_
1C 1028)		PLAN OF LAND TO BE ACQUIRED FOR THE PURPOSES OF THE ROADS ACT, 1993.	
11 2843 3475			Lengths are in metres. Reduction Ratio 1:1500	
0 ¹²	-		L.G.A. BAULKHAM HILLS	
			Locality: BAULKHAM HILLS	
			Parish: FIELD OF MARS	
			County: CUMBERLAND	
			This is sheet 1 of my plan in 2 sheets (Delete if inapplicable)	
WATEF WATEF WAT	TER 2.75 ER 2.5 V R 4 WIDE ER 2.5 V E PURPO PIPES	WIDE E WIDE	Surveying Regulation 2006 I, ROBERT W PASCOE of LOVEGROVE OXLEY CONSULTANTS P/L DX 8152 BLACKTOWN a surveyor registered under the Surveying Act 2002, certify that the survey represented in this plan is accurate, has been made in accordance with the Surveying Regulation 2006 and was completed on 28 NOV 2006 The survey relates to LOTS $7-12$ INCLUSIVE & CONNECTIONS (specify the land actually surveyed or specify any land shown in the plan that is not subject to survey) SEE SIGNATURES FORM Surveyor registered under the Surveying Act 2002 Datum Line: $\chi' - \Upsilon'$ Type: Urban Plans used in preparation of survey/compilation. DP2489 DP882423 DP1077594 DP27738 DP400638 DP1058264 DP400312 DP230475 DP1009842 DP615948 DP718923 DP1014560 8684-3000 DP630140 DP1028435 DP752028 (C8662-2030) RTA F.Bk No: 0160 031 FP 0009	
SH0 G 30" 35" 25" 10" 55" 55" 55" 35"	DISTA	NNCE 725 98 6355 81 405 13 75 55	PANEL FOR USE ONLY for statements of intention to dedicate public roads or to create public reserves, drainage reserves, easements, restrictions on the use of land or positive covenants LOTS 7, 8, 9, 10, 11 & 12 ARE REQUIRED FOR ROAD AND AFTER CONSTRUCTION WILL BE DEDICATED AS PUBLIC ROAD UNDER SEC 10 OF THE ROADS ACT, 1993.	
2000 R 2000	METHOD	ORIGIN SCIMS SCIMS SCIMS SCIMS	APPROVED SEE SIGNATURES FORM MANAGER SURVEY SERVICES DECIDAL OPERATIONS &	
			REGIONAL OPERATIONS & ENGINEERING SERVICES ROADS AND TRAFFIC AUTHORITY, NSW	

ePlan *OFFICE USE ONLY

*

R.T.A. FILE: 31.1339 L.A. R.T.A. PLAN : 0160 031 SS 4001

³ DP1108855 of /Seq:2 /Pgs:ALL 11:09 /Prt:21-Jan-2015 /Sts:SC.OK /Rev:01-Mar-2007 ቧ 1108855 Req:R870548 /Doc:DP Ref:41579 /Src:M_____ Req:R870548 /Doc:DP 1108855 P /Rev:01-Mar-2007 /Sts:SC.OK /Prt:21-Jan-201. R∉f:4957₽gé\$AGLM/Seq:3 of 3

CERTIFICATES, SIGNATURES AND SEALS Sheet 1 of 1 sheet PLAN OF LAND TO BE ACQUIRED FOR THE PURPOSES OF THE ROADS ACT, 1993. DP1108855 * 27.2.2007 **Registered:** Surveying Regulation 2006 SIGNATURES, SEALS and STATEMENTS of intention to dedicate public roads or to create public reserves I, ROBERT W PASCOE and drainage reserves. of LOVEGROVE OXLEY CONSULTANTS P/L DX 8152, BLACKTOWN a surveyor registered under the Surveying Act 2002, certify that the survey represented in this plan is accurate, has been made in accordance with the Surveying Regulation 2006 and was completed on: 28 NOV 2006 The survey relates to LOTS 7-12 INCLUSIVE & CONNECTIONS (specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey) Signature

Surveyor registered under the Surveying Act 2002

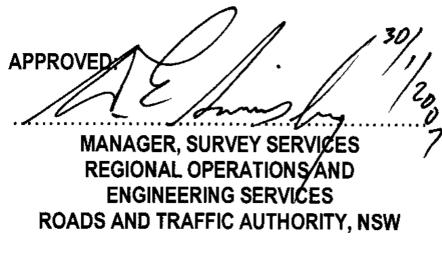
Datum Line: X' - Y'Type: Urban

Department of Lands Approval
I. Pallayt in approving this plan certify
(Authorised Officer)
that all necessary approvals in regard to the allocation of the land
shown hereon have been given P-12-4 Signature: 6.2.07
Signature:
Date: 6.2.07
File Number: MN071H 24
File Number: MN071724 Office: Sydney Metropolitan

Subdivision Certificate I certify that the provisions of s.109J of the Environmental Planging and Assessment Act 1979 have been satisfied in relation to;

set out herein the proposed.....

(insert 'subdivision' or 'new road')


THIS PLAN IS EXEMPT FROM SUBDIVISION CERTIFICATION PURSUANT TO A DECISION BETWEEN DUAP, RTA & LPI NSW - SEE 1997 M6 (Item 2). LAND IN THIS PLAN COMPRISES ONLY ROAD OB ROAD AND RESIDUE.

OFFICE USE ONLY

····· AUTHORISED OFFICER ROADS AND TRAFFIC AUTHORITY, NSW

* Authorised Person/General Manager/Accredited Certifier

Consent Authority: Date of Endorsement: Accreditation no: Subdivision Certificate no: File no: Note: When the plan is to be lodged electronically in Land and Property Information, it should include a signature in an electronic or digital format approved by the Registrar-General. *Delete whichever is inapplicable.

Use PLAN FORM 6A for additional certificates, signatures and seals

SURVEYOR'S REFERENCE: 69909 CHECKLIST (RTA:SP3345)

R.T.A. FILE: 31.1339 L.A. R.T.A. PLAN: 0160 031 SS 4001

© Office o Bancklin Nice. Shine ΗŪ BAULKHAM HILLS reland the /Doc the] Parish of Field of Mars County of Cumberland Scale 2ch. to Linch. CP 08684-3000 P Registrar-General Within R64890 From Sale (64891 from Lease depenally) for Public Recreation Notified 2 11 34 Rev 01 8.58 Part R64895 Sale or Lease generally (Sec 25 8) Notified 2 11.34 Revoked 2.11.34 Sp. 56193 Girl Guides Association P.57-5323 Part (about 2 perches) proposed to be declared public road is shown by red hatching in 1898 declared public. Gaz 20-4-59 fol 904. § 5p.L.50.173 Boy Scouts Association (15 Baulkam Hill) a 3r. 2/kg. (Refused) O Proposed Acainage Easement for Baulkham Hills to by Dept of The Interior to 71553. 0 68 Ms 8684 Sy /Rev:20 6.0.2 CASTLE 26-Nov-2012 :INFOTRACK / WINDSOR 3000 HILL ROAD RAILWAY /NSW LRS /Ref:depth from Parramatta to Castle Hill RED HATCHING 12 Or 31/2 p abt. (ded?) 24 38 9! /Prt:10-Apr-1 limitation S. 2020 11:59 /Seq:1 0f Р

2 Nov., 1934.] NEW SOUTH WALES GOVERNMENT GAZETTE No. 200.

RESERVATION FROM SALE OR LEASE GENERALLY.

PROCLAMATION.

IN pursuance of the provisions of section 25A of the Crown Lands Consolidation Act, 1913, I, Sir PHILIP WOOLCOTT GAME, Governor of the State of New South Wales, with the advice of the Executive Council, do hereby proclaim the following areas of land to be reserved from sale or lease generally, and the same are hereby reserved accordingly:--

LAND DISTRICT-METROPOLITAN; SHIRE-BLACKTOWN.

No. 64,895. Parish St. John, county Cumberland; area, about 4 acres 2 roods 24 perches, shown by red edging on plan Ms. 8,687 Sy. Roll.

Parish St. John, county Cumberland; area, about 2 roods 28 perches (in two parts), as shown by red edging on plan Ms. 8,683 Sy.

LAND DISTRICT-METROPOLITAN; SHIRE-BAULKHAM HILLS.

Parish South Colah, county Cumberland; area, about 2 acres 2 roods, as shown by red edging on plan Ms. 8,686 Sy.

Parish Castle Hill, county Cumberland; area, about 4 acres 1 rood 23 perches, as shown by red edging and blue tint on plan Ms. 8,685 Sy.

Parish Field of Mars, county Cumberland; area, about 4 acres 2 roods 11½ perches (in two parts), as shown by . red edging on plan Ms. 8,684 Sy. P. 34-8,856.

Signed and sealed at Sydney, this 1st day of November, 1934.

PHILIP GAME, Governor.

By His Excellency's Command,

E. A. BUTTENSHAW, Minister for Lands.

(6152) GOD SAVE THE KING!

REVOCATION OF RESERVE FROM SALE OR LEASE GENERALLY.

PROCLAMATION.

IN pursuance of the provisions of section 25A of the Crown Lands Consolidation Act, 1913, I Sir PHILIP WOOLCOTT GAME, Governor of the State of New South Wales, with the advice of the Executive Council, do hereby proclaim the reserve from sale or lease generally, particularised in the Schedule hereunder, to be revoked, and the same is hereby revoked accordingly:—

LAND DISTRICT-METROPOLITAN; SHIRES-BLACKTOWN AND BAULKHAM HILLS.

No. 64,895. Parishes of St. John, South Colah, Castle Hill and Field of Mars, county of Cumberland; about 16 acres 3 roods 6½ perches. P. 34-8,856.

Signed and scaled at Sydney, this 1st day of November, 1934.

PHILIP GAME, Governor.

By His Excellency's Command,

E. A. BUTTENSHAW, Minister for Lands.

(6153) GOD SAVE THE KING!

(6164)

Sydney, 2nd November, 1934.

FOR TRAVELLING STOCK.

LAND DISTRICT-WARIALDA; SHIRE-BOOLOOROO.

Within Coppymurrumbil Occupation License No. 308.

No. 64,870. Parish Coppymurrumbil, county Stapylton, about 230 acres; being a strip of Crown Land 10 chains wide extending south-easterly from the southeastern side of T.S.R. 32,019; along the north-eastern boundary of Reserve 56,998 from sale and lease generally; thence north-casterly and thence north-westerly along north-western and south-western boundaries of portion 11, parish Mungle, and a continuation northwesterly of the lastmentioned boundary to its junction with a boundary of portion 1, parish Coppymurrumbil, on the north-western side of T.S.R. 32,019. Ms. 881 Me. R. P. 34-8,715.

LAND DISTRICT—COONABARRABRAN; SHIRE— COONABARABRAN.

No. 64,894. Parish Coonabarrabran, county Gowen; about 98 acres (in two parts) shown by green edgings on sketch marked "D" with papers. P. 34-8,993.

(6195)

Sydney, 2nd November, 1934.

RESERVE FROM SALE GENERALLY.

IT is hereby notified that, in pursuance of the provisions of section 29 of the Crown Lands Consolidation Act, 1913, the Crown Lands hereunder described shall be and are hereby temporarily reserved from sale generally.

E. A. BUTTENSHAW, Minister for Lands.

LAND DISTRICT-COOMA; SHIRE-MONARO.

No. 64,872. Parish Sherlock, county Beresford, 246 acres 1 rood, portions 69 and 107. B. 4,428 and 4,427-1,765. L. 34-12,622.

(6196)

Sydney, 2nd November, 1934.

RESERVE FROM SALE OR LEASE GENERALLY.

IT is hereby notified that, in pursuance of the provisions of section 29 of the Crown Lands Consolidation Act, 1913, the Crown Lands hereunder described shall be temporarily reserved from sale or lease generally.

E. A. BUTTENSHAW, Minister for Lands.

LAND DISTRICT-COOMA; SHIRE-MONARO.

No. 64,879. Parish Hill, county Beresford, about 755 acres: Commencing at the north-western corner of portion 59; and bounded thence by portions 59 and 1, end of road and part of portion 45 easterly for a distance of about 62 chains; thence by lines northerly about 31 chains and easterly about 32 chains to Burra Creek; and thence by that creek generally northerly, part portion 17 westerly, and Scrub Lease 305 and portion 58 generally south-easterly, to the point of commencement. P. 34-8,107.

(6162)

Sydney, 2nd November, 1934.

RESERVES FROM SALE AND LEASE GENERALLY.

1T is hereby notified that, in pursuance of the provisions of sections 28 and 29 of the Crown Lands Consolidation Act, 1913, the Crown Lands hereunder described shall be

RESERVES FROM SALE.

IT is hereby notified that, in pursuance of the provisions of section 28 of the Crown Lands Consolidation Act, 1913, the Crown Lands hereunder described shall be reserved from sale for the public purposes hereinafter specified, and they are hereby reserved accordingly.

E. A. BUTTENSHAW, Minister for Lands.

FOR PUBLIC HALL.

LAND DISTRICT-BALRANALD.

No. 64,869. Parish Benanee, county Taila, about acre, red tint. W.L.O. 3,513. P. 34-8,802. temporarily reserved from sale for the public purposes hereinafter specified, and temporarily reserved and exempted from lease generally, and they are hereby reserved and exempted accordingly.

E. A. BUTTENSHAW, Minister for Lands.

FOR CAMPING.

LAND DISTRICT-ALBURY; SHIRE-HUME.

No. 64,863 from sale (64,864 from lease generally). Parish Albury, county Goulburn; about 1½ acres, bounded on the west by portion 646, on the south and north-east by public roads. L. 34-15,435.

National Library of Australia

http://nla.gov.au/nla.news-page14075136

FOR PUBLIC RECREATION AND ACCESS. LAND DISTRICT-BELLINGEN; SHIRE-BELLINGEN.

No. 64,865 from sale (64,866 from lease generally). Parish South Bellingen, county Raleigh, village Weekes; about 34 acres: Commencing on the North Arm of the Bellingen River at the northern corner of a log depot adjoining portion Ms. 416 Ksy.; and bounded by that depot, the road 150 links wide from Bellingen to Raleigh, allotment 1, section 2, a line, allotments 6, 5, 4 and 3, section 1, and the road of approach to Fernmount Ferry; exclusive of Bell-street and of about 8 perches occupied by R. S. McDougall. P. 34-8,396.

FOR RESTING PLACE.

LAND DISTRICT-MOSS VALE; SHIRE-NATTAL

No. 64,867 from sale (64,868 from lease generally). Parish Berrima, county Camden, town Berrima; about 3 acres 1 rood 32 perches, bounded by addition to Police Paddock, dedicated 6th January, 1846, Fountain-street, Oxley-street and Wingecarribee River. P. 34-8,377.

FOR ATHLETIC SPORTS.

LAND DISTRICT-BEGA; SHIRE-IMLAY.

No. 64,873 from sale (64,874 from lease generally). Parish Wallagoot, county Auckland, town Tathra; about 5 acres, bounded by Koorilla, Bega and Tomigee streets, and R. 64,333 for Public Recreation, notified 5th January, 1934. Includes portions 184, 185, and part 186. A. 3,318-2,098 roll. P. 34-8,384.

FOR TRAVELLING STOCK AND CAMPING.

LAND DISTRICT-CASINO; SHIRE-COPMANHURST.

No. 64,875 from sale (64,876 from lease generally). Parish Ewingar, county Drake; 28 acres, bounded by Ewingar Creek, by portions 27 and 24, and by a line from the south-east corner of portion 27 to the southwest corner of portion 24. P. 34-8,996.

FOR POLICE PURPOSES.

LAND DISTRICT-PENRITH; MUNICIPALITY-KATOOMBA.

No. 64,877 from sale (64,878 from lease generally). Parish Blackheath, county Cook; 1 rood 39‡ perches, within portion 525. C. 2,566-1,507. Mis. 26-5,013.

FOR PUBLIC RECREATION.

LAND DISTRICT-HILLSTON; SHIRE-LACHLAN.

No. 64,880 from sale (64,881 from lease generally). Parish Bootoowa, county Dowling; 10 acres, portion 32. D. 1,411-1,841. P. 34-5,828.

FOR WAR MEMORIAL.

LAND DISTRICT-METROPOLITAN; SHIRE-BAULKHAM HILLS.

No. 64,882 from sale (64,883 from lease generally). Parish Castle Hill, county Cumberland; about 3 roods 14½ perches, as shown by blue tint on plan Ms. 8,685 Sy. P. 34-8,856.

FOR HOSPITAL (ADDITION).

LAND DISTRICT-METROPOLITAN; SHIRE-BLACKTOWN.

No. 64,884 from sale (64,885 from lease generally). Parish St. John, county Cumberland; about 4 acres 2 roods 24 perches, as shown by red edging on plan Ms. 8,687 Sy. roll. P. 34-8,856.

FOR PUBLIC RECREATION.

LAND DISTRICT-METROPOLITAN; SHIRE-BAULKHAM HILLS.

No. 64,886 from sale (64,887 from lease generally). Parish Castle Hill, county Cumberland; about 3 acres 2 roods, 8½ perches, as shown by red edging on plan Mise. 8,685 Sy. P. 34-8,856.

LAND DISTRICT--METROPOLITAN; SHIRE-BLACKTOWN.

No. 64,888 from sale (64,889 from lease generally). Parish St. John, county Cumberland; about 2 roods 28 perches (in two parts), as shown by red edging on plan Ms. 8,683 Sy. P. 31-8,856. (6163)

Sydney, 2nd November, 1934.

WITHDRAWAL OF TRAVELLING STOCK AND CAMPING RESERVES FROM THE CONTROL OF PASTURES PROTECTION BOARDS.

IT is hereby notified that, in pursuance of the provisions of the Pastures Protection Act, 1912, as amended by Act No. 49, 1918, and Act No. 25, 1920, the parts of travelling stock and camping reserves particularised hereunder shall be and the same are hereby withdrawn from the control of the Pastures Protection Boards of the districts mentioned.

E. A. BUTTENSHAW, Minister for Lands.

LAND BOARD DISTRICT-MAITLAND; PASTURES PROTEC-TION DISTRICT-PORT MACQUARIE,

Parish Ellenborough, county Macquarie; Reserve No. 103 for travelling stock. Part withdrawn—comprises about 5 acres 2 roods within approved Special Lease 1934-6.

(Placed under control, Gazette 16th December, 1921; renewed, 9th December, 1932.) L. 34-17,100.

LAND BOARD DISTRICT-MOREE; PASTURES PROTECTION DISTRICT-WARIALDA.

Parish Bledger, county Burnett; Reserve No. 14,771 for travelling stock. Part withdrawn—9 acres, being part within closed reserved road within portion 23.

part within closed reserved road within portion 23. (Placed under control, Gazette 11th July, 1930.) R. 33-370.

LAND BOARD DISTRICT-WAGGA WAGGA; PASTURES PRO-TECTION DISTRICT-COROWA.

Parish Boreegerry, county Urana; Reserve No. 49,972 for travelling stock and camping. Part dedicated as public road R. 18,964-1,603.

(Gazetted 7th, September, 1934.) P. 34-9,032.

LAND BOARD DISTRICT-DUBBO; PASTURES PROTECTION DISTRICT-DUBBO.

Parish Whylandra, county Gordon; Reserve No. 732 from sale for travelling stock. Part withdrawn-10 ac. 2 rd, 10 per. within portion 151.

(Placed under control, Gazette 25th January, 1924; extended 14th February, 1930). S. 34-19,544.

LAND BOARD DISTRICT-GRAFTON; PASTURES PROTECTION DISTRICT-GRAFTON.

Parish Nymboida, county Fitzroy; travelling stock and camping reserve 36,957. Part withdrawn—part (about 41 acres) east of portion 18, north of Goolang Creek.

(Placed under control, Gazette 16th April, 1920, extended Gazettes 17th April, 1925, and 31st October, 1930). L. 34-17,436.

Parish Kremnos, county Clarence; Reserve No. 36,287 from sale for water supply and camping. Part withdrawn—the part within approved Special Lease 34-11.

(Placed under control, 3rd December, 1920, and 2nd December, 1932). L. 34-16,954.

LAND BOARD DISTRICT-MAITLAND; PASTURES PROTEC-TION DISTRICT-MAITLAND.

Parish Hay, county Northumberland; Reserve No. 155 for camping and access to water. Part withdrawn-

about 34 acres within approved Special Lease 34-3. (Placed under control, Gazette 23rd April, 1920, extended 31st October, 1930). L. 34-17,547.

Sydney, 2nd November, 1934.

CROWN LANDS NOT AVAILABLE FOR SETTLE-MENT UNTIL FURTHER NOTIFICATION.

(6165)

IN pursuance of the provisions of section 84 of the Crown Lands Consolidation Act, 1913, it is hereby notified that the Crown Lands comprised within the tracts or areas hereunder described shall not be available for the purposes of any application until a further notification has been published in the Gazette.

3994

LAND DISTRICT METROPOLITAN; SHIRE-BAULKHAM HILLS.

No. 64,890 from sale (64,891 from lease generally). Parish Field of Mars, county Cumberland; about 4 acres 2 roods 11¹/₂ perches (in two parts), as shown by red edging on plan Ms. 8,684 Sy. P. 34-8,856.

LAND DISTRICT-METROPOLITAN; SHIRE-BAULKHAM HILLS.

No. 64,892 from sale (64,893 from lease generally). Parish South Colah, county Cumberland; about 2 acres 2 roods, as shown by red edging on plan Ms. 8,686 Sy. P. 34-8,856.

E. A. BUTTENSHAW, Minister for Lands.

LAND DISTRICT-BRAIDWOOD; SHIRE-TALLAGANDA.

Parish Bettowynd, county St. Vincent; about 388 acres: Commencing on the south-eastern boundary of portion 190 at a point distant about 1 chain north-easterly from the south-eastern corner of that portion; and bounded thence by a line east to Araluen Creek; thence by that creek upwards to the south-eastern corner of portion 1, parish of Araluen; thence by that portion and

National Library of Australia

http://nla.gov.au/nla.news-page14075137

NEW SOUTH WALES GOVERNMENT GAZETTE No. 11 [31 JANUARY, 1964

(4568)

REVOCATION OF RESERVES FROM SALE, LEASE, ETC.

Sydney, 31st January, 1964.

IT is hereby notified that under the provisions of section 30 of the Crown Lands Consolidation Act, 1913, the reserves from sale, lease, etc., hereunder described, are hereby revoked.

K. C. COMPTON, Minister for Lands.

Land District		Reserve No.	Purpose	Date of Notification	Parish	County	Shire, etc.	Area	Part Revoked	Papers N
Bathurst		66,907	For public recreation	3 Sep., 1937	Bathurst	Bathurst	City of Bathurst	*. r. p. 2 2 27	Bounded by Henry, Wil- liam and Durham streets, the south - castern boun- dary of allotment 1, section 72, and it's pro- longation to the said	
Bega		64,171	For water supply	22 Sept., 1933	Eden	Auckland	Imlay	1 2 0	Henry-street. Ms. 2,406 Oe. Part within portion 110. A.	Construction and and a
Do]		do do	24 Dec., 1861	do	do	do	(about). 1 3 28	3,867-2,098. Portion 110. A. 3,867- 2,098.	do
asino		46,040	For public hall	23 Nov., 1910	Hogarth	Richmond	Copman- hurst.	100	The whole; portion 113. R. 2,017-1,744.	P. 61-5,
ondobolin	•••	7,436	For travelling stock	3 May, 1890	Mount Nobby and Mowabla	Cunningham		669 0 0 (about).	Part withdrawn from Pas- tures Protection Board control this day.	
Do	•••	17,213	do do	15 Apr., 1893		do	do	10 0 0 (about).	do do	do
Do		7,420	For travelling stock and camping.	27 Oct., 1888	do	do	do	525 0 0 (about).	Part south-west of the south-easterly prolong- ation of the north-east- ern boundary of portion 69; Ms. 58 Fs.	
Do	••	7,419	do do	27 Oct., 1888	do	do	do	75 0 0 (about).	Part south-west of the south-easterly prolong- ation of the north-eastern boundary of portion 69; Ms. 58. Fs.	
ubbo		64,722	For public school	24 Aug., 1934	Bundijoe	Ewenmar	Warren	1 3 36	The whole; portion 11. E. 2,294-1,890.	P. 64-23
loucester		16,783	For public school purposes	26 Nov., 1892	Myall	Gloucester	Stroud	520	The whole; portion 40. G. 2,625-1,497.	P. 63-3,
Do		70	do do	28 June, 1880	do	do	do	2 0 0 (about).	Part bounded by public road 150 links wide, Deep Creek and a line from the south-western corner of portion 48 perpendicular to that road.	do
osford	••	48,831	For public recreation	14 May, 1913	Ware-during over the cost of	Northum- berland. te Town of W	Wyong		Portion 134. N. 8,447- 2,111.	
rafton	•••	56,146	From sale or lease gener- ally.	11 May, 1923		Gresham	Nymboida	0 2 0 (about).	Bed of Pipeclay Creek within portion 43. G. 721-1,782.	
verell	•••	42,569	For racecourse	1947/1923/ - 932-33	222 33 33433	Arrawatta	Ashford	90 2 0	The whole; portion 16. A. 2,613-1,847.	1000 - 175 C 2000
ismore	•••	1,278	For public wharf	28 July, 1884		Rous	Tintenbar	10 0 0 (about).	The whole includes por- tions 300 and 365. R. 9,328, 9,822-1,759.	- 0.1
Do	•••	700	For water supply and acess thereto.		Gundu- rimba.	do	Gundurimba	4 0 0 (about).	The balance	
letropolitar		Street and St.		2 Nov., 1934	Mars.	Cumberland	Baulkham Hills.		Part within portion 932. C. 8,662-2,030.	
lolong	-	56,146	From sale or lease gener- ally.	11 May, 1923	Buckinbah	Gordon	Molong	500 (about).	Bed of Darigal or Hanover Creek within portion 143.	
yngan	••	75,781	For public recreation	1 May, 1953	Beaconsfield (Suburban La	Kennedy nds of Villag ham.)	Lachlan e of Totten-	4 1 28	G. 3,561-1,567. Portion 148. K. 2,419- 2,004 R.	T. 63-4,
enrith		32	For preservation of water supply for Railway pur- poses.	10 May, 1876	Jamieson	Cook	Blue Moun- tains.	94 0 0 (about).	The residue	P. 62-3,
ort Macqua	rie	58,126	For public school purposes	3 July, 1925	Pappinbarra	Macquarie	Hastings	200	The whole; portion 183. M. 7,569-666.	1.00
ucanbeyan	••	83,867	From sale or lease gener- ally.	29 June, 1962	Queanbeyan	Murray	Queanbeyan.	3 29	All otments 5 and 6, section 47. Queanbeyan 43.	T. 63-5,
amworth		31,534	For Police purposes	22 Sept., 1900	Loftus	n of Queanb Parry	Cockburn	0 1 0	Allotment 9, section 3.	P. 56-3,
Varialda	••	7,314	For temporary common	29 Sept., 1888	Boggabilla	n Town Wea Stapylton ands, Village	Boolooroo	0 3 26	Swamp Oak 4. Portion 217. S. 2,043- 1,857.	T. 63-2,

(4309)

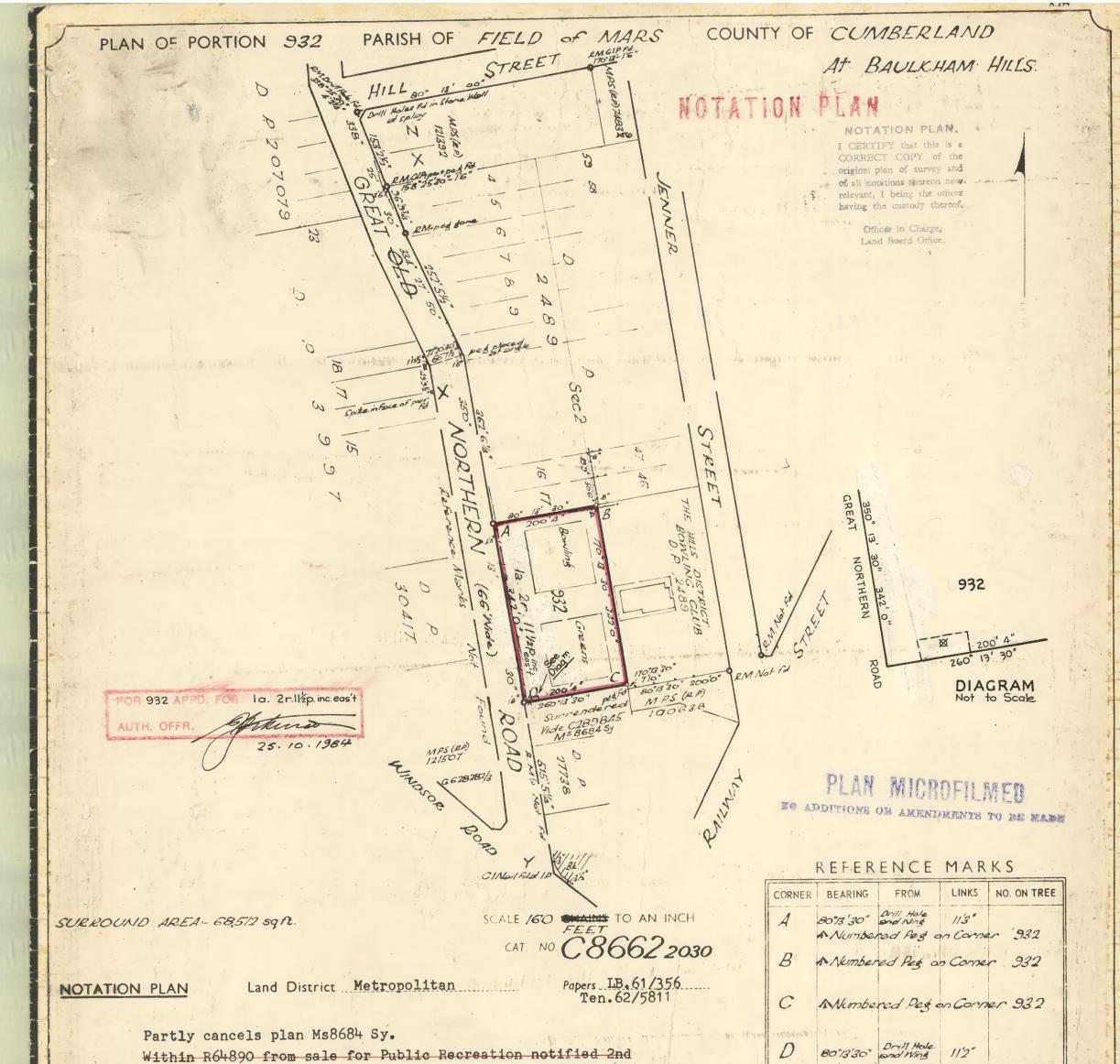
Sydney, 31st January, 1964

REVOCATION OF NOTIFICATIONS OF SUBURBAN HOLDING AREAS

IT is hereby notified that, in pursuance of the provisions of the Crown Lands Consolidation Act, 1913, the notifications of

320

suburban holding areas are hereby revoked in respect of the areas particularised hereunder.


K. C. COMPTON, Minister for Lands.

Land District	Class of holding for which the land was set apart	Date of Notification	Parish	County	Shire, etc.	Area	Part Revoked	Papers No.
Bellingen . Blayney . Dunedoo Central. Mudgee .	Area No. 2,946 Area No. 2,218 Area No. 3,048 (Closer Settlement). Area No. 3,194	6 Mar., 1959 14 May, 1954 9 Oct., 1959 10 Mar., 1961	Valley. Errol (T Coolah	Raleigh Bathurst own of Blayn Napier Phillip	Nambucca Lyndhurst ey) Coolah Cudgegong	4. r. p. 28 1 0 0 0 36 64 0 2 23 0 0	1,714. Allotment 4, section 26. B. 26- 1,232. The whole. N. 1,686, 1,687, 1,688 R1.883.	P. 63-3,036

National Library of Australia

http://nla.gov.au/nla.news-page15734318

Req:R919334 /Doc:CP 08662-2030 P /Rev:29-Nov-2012 /NSW LRS /Prt:10-Apr-2020 11:58 /Seq:1 of 1 © Office of the Registrar-General /Src:INFOTRACK /Ref:depth limitation

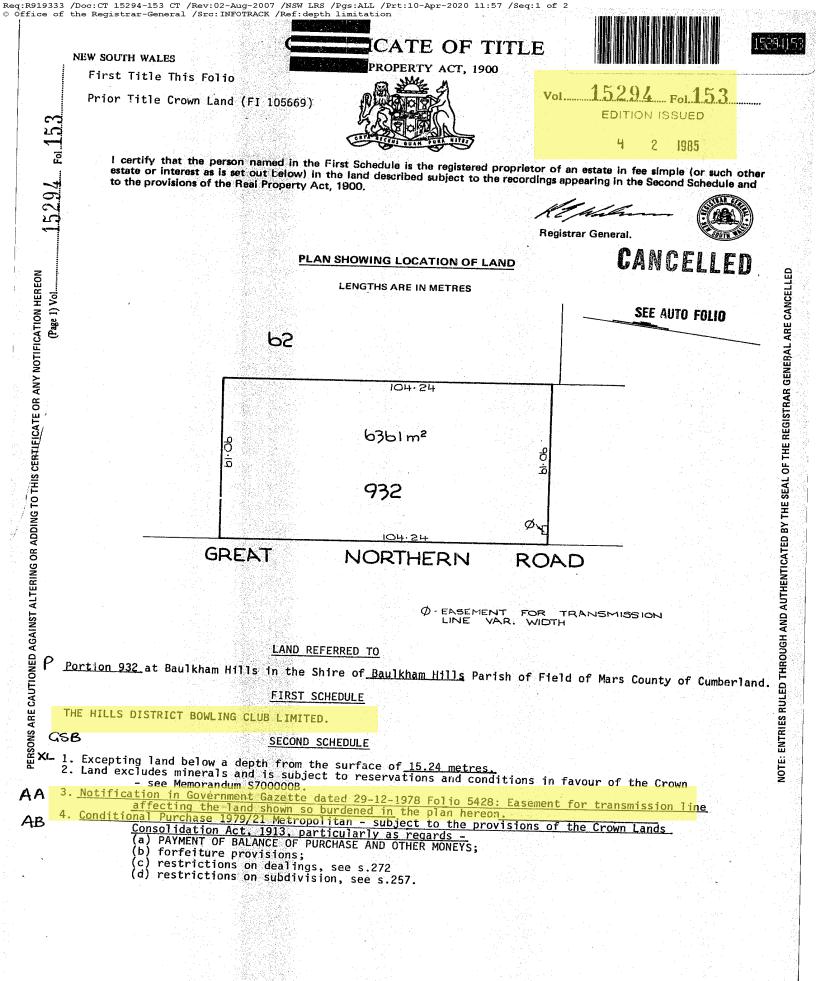
NOTATION PLAN

November, 1934. Rord 31.1.64

R2716 from occupation under any M.R. or B.L. notified 28th October, 1960.

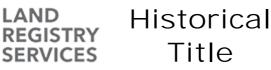
Title is limited to the surface and to a depth of fifty (50) feet below the surface.

Portion 932 Sp.L.61/9 The Hills District Bowling Club. Gaz 13 3 64-


Ø Easement for T/L. Gaz. 29-12-78. fol. 5429.

AVUMbered Peg on Corner 932 AZIMUTH TAKEN FROM X - Y (DP* 2489, 27738439, FIELD BOOKABGG PAGES 7 - 12 1 CHRISTODHER WARWICK SMITH of 399 PACIFIC HIGHWAY ASQUITH a Surveyor registered under the Surveyors Act, 1929-1946, hereby certify that the survey represented in this plan is occurate and hos been made by me in occordance with

the Survey Proctice Regulations, 1933, and the special requirements of the Deportment of Lands and was completed on 3nd May 1963


Signature thristoplas h. Init Surveyor registered under the Surveyors Act, 1929-1946.

Printed at the Department of Lands. Sydney. N.S.W J

NINKANA I Managementaria 40828-4038					
	FIRST SCH REGISTERED PRO	IEDULE (continued) PRIETOR			Registrar Gene
CANCELLED					
LAN VE					н - н
SEE AUTO FOLIO					
	SECOND SCI	HEDULE (continued)			
	PARTICULARS			Registrar General	CANCELLATI
					1
			and and a second se		
					and a start of the
		n an an Arland an Arland an Arland Arland an Arland an Arland an Arland Arland an Arland			
					1
		an an an Araban an Araban An Araban an Araban An Araban an Araban		en de <mark>beskenden. Angeleinen der einen sonderen s</mark>	
	NOTATIONS AND U	UNREGISTERED DEA	LINGS		· · · · · · · · · · · ·

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

FOLIO: 4/1108855

First Title(s): VOL 15294 FOL 153 Prior Title(s): 932/752028

Recorded	Number	Type of Instrument	C.T. Issue
27/2/2007	DP1108855	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
19/2/2008	AD712358	REQUEST	FOLIO CREATED CT NOT ISSUED
1/5/2020 1/5/2020	AQ70332 AQ70333	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 1

*** END OF SEARCH ***

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 4/1108855

LAND

SERVICES

-			

SEARCH DATE	TIME	EDITION NO	DATE
4/9/2020	6:32 PM	1	1/5/2020

LAND

_ _ _ _

LOT 4 IN DEPOSITED PLAN 1108855 AT BAULKHAM HILLS LOCAL GOVERNMENT AREA THE HILLS SHIRE PARISH OF FIELD OF MARS COUNTY OF CUMBERLAND TITLE DIAGRAM DP1108855

FIRST SCHEDULE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

THE HILLS DISTRICT BOWLING CLUB LIMITED

SECOND SCHEDULE (4 NOTIFICATIONS)

LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND 1 CONDITIONS IN FAVOUR OF THE CROWN - SEE MEMORANDUM S700000B

2 EXCEPTING LAND BELOW A DEPTH FROM THE SURFACE OF 15.24 METRES EASEMENT FOR TRANSMISSION LINE EASEMENT FOR TRANSMISSION LINE 3

AFFECTING THE LAND SHOWN SO BURDENED IN TITLE DIAGRAM GOV GAZ 29-12-1978 FOL 5428

MORTGAGE TO NASR GROUP INVESTMENTS PTY LTD 4 AQ70333

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Appendix G – SafeWork NSW Record

Our Ref: D20/177543

25 September 2020

Mr Liangshi Chen El Australia liangshi.chen@eiaustralia.com.au

Dear Mr Chen

RE SITE: Lot 39-45 in section 2 DP2489, Lot Z in DP 400638 and Lot 4 in DP1108855

Old Northern Rd, Baulkham Hills NSW 2153

I refer to your site search request received by SafeWork NSW on 25 August 2020 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the abovementioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.auw</u>

Yours sincerely

Gabriela Draper

Customer Service Officer Customer Experience - Operations SafeWork NSW

Appendix H – Borehole Logs

BOREHOLE LOG

BH NO. BH1M

	Lo	oject catio sitio	n	The H		velopment /ling Club, Baulkhan re 2	n Hil	ls NSV	V			I	Sheet Date Started Date Completed	1 of 3 03/08/2020 03/08/2020	
		b No	•		32.E01 Proper	ty Group Pty Ltd							Logged By IW	Date 03/08/2020	
┝		ent rilling	n Co	ntactor	-	osense Drilling			Su	rface RL ≈103.10 m AHD			Reviewed By SR	Date 01/08/2020	
		rill R				njin DB8				lination -90°					
			Dri	ling		Sampling	_			Field Material Desc					
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSEF	TURE AND ITIONAL RVATIONS	
				0	103.10	BH1M_0.2-0.3 DS			-	FILL: Silty SAND; fine to medium grained, grey, with rootlets.	м	-	FILL		
	AD/T	-	GWNE	- 1	0.90 102.20	SPT 0.50-0.95 m 3,3,3 N=6			-	FILL: Silty CLAY; medium plasticity, brown, variably compacted, with some ash, bitumen and brick fragments.	м				-
				_	1.60 1.75	BH1M_1.2-1.3 DS			-	SHALE; pale grey-brown, very low strength, distinctly	(=PL	.) -	BEDROCK		
				- 2— -		16,26/100mm HB N>30				weathered. Continued as Cored Borehole					-
26															
EIA 2.00.1 2017-09-				-											
In Situ Tool - DGD Lib: EIA 2.00.3 2017-11-21 Prj; EIA 2.00.1 2017-09-26				4											-
DGD LIb: EIA 2.0				-											
				5											-
3 10.0.000 Datgel I				6											-
> 02/09/2020 09:4				-											
3PJ < <drawingfile:< th=""><th></th><th></th><th></th><th>- 7</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></drawingfile:<>				- 7											-
OREHOLE LOGS.(-											
.E 1 E24782.G03 B				8											
-CORED BOREHOL				9											-
EIA 200.3 LIB.GLB Log EIA NON-CORED BOREHOLE 1 E24782.G03 BOREHOLE LOGS.GPJ < <drawingfile>> 02/09/2020.09:43 10.0.000 DatgeLab and</drawingfile>				-											
EIA 2.00.3 LIE				10 —		This boreho	ole lo	 og sho	 uld b	e read in conjunction with EI Australia's accompanying st	anda	Ird no	l otes.		

BOREHOLE LOG

BH NO. BH2M

L F J	Project ocatio Positic lob No Client	on n	The H Refer E2478	lills Bov to Figu 32.E01	velopment vling Club, Baulkharr re 2 ty Group Pty Ltd	n Hil	ls NSV	V				Sheet 1 of 3 Date Started 04/08/2020 Date Completed 04/08/2020 Logged By RS/IW Date 04/08/2020 Reviewed By SR Date 01/09/2020
		-	ntactor		osense Drilling				face RL ≈98.50 m AHD			
┝	Drill R	-	lling	па	njin DB8 Sampling			Inc	lination -90° Field Material Desc	riptio	on	
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0	98.50 0.50 98.00				-	FILL: Silty SAND; fine to medium grained, dark brown, trace rootlets. FILL: Silty CLAY; medium plasticity, pale grey-brown, with fine to coarse, angular to sub-angular gravel.	м	-	FILL
			- 1 -		SPT 0.50-0.95 m 1/300mm,1 N=10				to coarse, angular to sub-angular gravel.			
	-		- 2 - -		SPT 1.50-1.95 m 2,2,3 N=5					M (=PL) -	
AD/T			- 3— - -		SPT 3.00-3.45 m 2,4,5 N=9							
4		V 4/8/20	4	4.50 94.00	SPT 4.50-4.70 m			-	SHALE; pale grey-brown, very low strength, extremely to distinctly weathered.			BEDROCK
	L			<u>5.50</u> 93.00	23,12/50mm HB N>30				From 5.5 m, grading to very low to low strength.	-	-	
000.			-	6.00								
			6	0.00					Continued as Cored Borehole			
			7									-
			- 8									
			- - 9									
					This boreho	le lo	og shou	uld b	e read in conjunction with EI Australia's accompanying st	anda	rd no	otes.

BOREHOLE LOG

BH NO. BH3

	Lo Po	oject catio sitio b No	n n	The H Refer		velopment vling Club, Baulkhar re 2	n Hil	ls NSV	V			C C	Sheet 1 of 3 Date Started 05/08/2020 Date Completed 05/08/2020 Logged By RS/IW Date 05/08	
		ent		Arden	Proper	ty Group Pty Ltd						F	Reviewed By SR Date 01/09	/2020
			-	ntactor		osense Drilling				face RL ≈99.00 m AHD				
╞	D	rill R	-		На	njin DB8		1	Inc	lination -90°				
┢	_	-	Dril	ling		Sampling			1	Field Material Desc	-	-		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F	E -			0	98.95			\otimes	-	ASPHALT; 50 mm thick pavement.	<u>Г</u>		ASPHALT PAVEMENT	
				-	0.50			\bigotimes		FILL: Gravelly SAND; fine to coarse grained sand, pale brown, fine to medium, sub-angular gravel.		-		
				-	98.50	SPT 0.50-0.95 m		XX	-	FILL: Silty CLAY; low plasticity, brown, with trace fine to medium, angular to sub-angular ironstone and shale gravel.	1			
				-	1.00	2,3,4 N=7		\bigotimes						
				1 —	98.00					From 1.0 to 1.9 m, with some fine to coarse, angular to	1			-
		-		-						sub-angular shale gravel.	м			
				-		SPT 1.50-1.95 m					(=PL)	1 -		
	AD/T		GWNE	-	1.90	2,2,2 N=4		\bigotimes						
	A		ß	2—	97.10				4	From 1.9 m, grading to brown-pale brown.				-
				_				\bigotimes						
				-	2.60 96.40			XXX					BEDROCK	
				-	00.10			-		SHALE; brown-grey, very low strength, distinctly weathered.				
7-09-26		L		3—		SPT 2.90-2.91 m								-
0.1 201				_		3/10mm HB					-			
: EIA 2.0		м		-										
In Situ Tool - DGD Lib: EIA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26	_				3.80				-	Continued as Cored Borehole				
3 2017-1				4										-
A 2.00.3				_										
Lib: El				-										
I - DGD				-										
Situ Too				5 —										-
				-										
atgel Lai				-										
0.000 D				-										
:43 10.0				6 —										-
2020 09				_										
02/09/				-										
ngFile>>				-										
< <drawi< th=""><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawi<>				7										-
S.GPJ				-										
LE LOG				-										
OREHO				-										
2.G03 B				8-										-
E2478.				_										
HOLE 1				-										
BORE				-										
-COREL				9										-
A NON				_										
Log El				-										
EIA 200 3 LIB.GLB Log EIA NON-CORED BOREHOLE 1 E24782.033 BOREHOLE LOCS.GPJ < <drawingfile>> 02/09/2020.09.43 100.000 DaigeLab and</drawingfile>				-										
2.00.3 L				10 —		This borebo	ole Ir	a sho	uld h	l e read in conjunction with El Australia's accompanying st	anda	rd no	utes.	
EIA								.9 0110						

BOREHOLE LOG

BH NO. BH4M

	Lo Po Jol	oject catio sitio b No ent	n n	The H Refer E2478	iills Bov to Figu 32.E01	velopment vling Club, Baulkhan re 2 ty Group Pty Ltd	n Hil	s NSV	V				Sheet Date Started Date Completed Logged By RS Reviewed By SR	1 of 3 04/08/2020 05/08/2020 Date 04/08/2020 Date 01/09/2020	
			-	ntactor		osense Drilling				face RL ≈103.80 m AHD lination -90°					
┢		rill R	Dril	ling	Па	njin DB8 Sampling			IIIC	lination -90° Field Material Descr	iptic	on			_
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY REL. DENSITY	STRUC ADD OBSEF	TURE AND TIONAL WATIONS	
F		-		0	0.20			$\times\!\!\times\!\!\times$	-	ASPHALT; 50 mm thick pavement.			ASPHALT PAVEMEN	IT	_
				-	103.60	SPT 0.60-0.75 m 34 HB			-	FILL: Gravelly SAND; fine to medium grained sand, pale grey, with some medium, angular to sub-angular blue metal gravel. SHALE; brown-pale grey, very low strength, extremely to distinctly weathered, with some extremely weathered seams.	-	-	BEDROCK		_
				1 —		N>30									-
				-											
				2											_
				-											
				_											
-09-26				3—											_
2.00.1 2017				-											
1-21 Prj: EIA	AD/T	L		-											
In Situ Tool - DGD Lib: EA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26				4							-	-			-
LIb: EIA 2.0				-	4.70										
Tool - DGD				5	99.10					From 4.7 m, with slight chemical odour.					_
			4/8/20	-											
Datgel Lab			\square	_											
43 10.0.000				6 —											-
09/2020 09:				-											
1gFile>> 02				-											
J < <drawi< th=""><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawi<>				7											-
E LOGS.GF					7.60					Castinuad as Cared Barebala					
3 BOREHOL				- 8—						Continued as Cored Borehole					_
E24782.G03				-											
REHOLE 1				-											
CORED BOI				9											-
EIA NON-				-											
EA 200.3 LIB.GLB Log EIA NON-CORED BOREHOLE 1 E24782.G03 BOREHOLE LOGS GPJ <				-											
EIA 2.00.3 L				10 —		This boreho	ole lo	l og sho	uld b	e read in conjunction with EI Australia's accompanying sta	Indai	rd no	tes.		

ProjectPreliminary Site InvestigationLocationArden Property Group Pty LtdPositionRefer to Figure 2Job No.E24782.E01ClientRiveredge Investments Pty Ltd

Contractor Drill Rig Hand Auger Inclination -90°

BOREHOLE: BH5

 Sheet
 1 OF 1

 Date Started
 5/8/20

 Date Complete
 5/8/20

 Logged
 IW

 Date:
 Date:

F			Dril	ling		Sampling				Field Material Desc	riptio	on	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0		BH5_0.1-0.2 ES 0.10-0.20 m			-	FILL: Silty sand, fine to medium grained, dark brown, with rootlets, no odour.			FILL .
	НА	-	GWNE	0.5 —	0.50				CI	Silty Clay, medium plasticity, red and brown mottled pale grey, with some fine to medium ironstone gravels, no odour.	D	-	RESIDUAL SOIL
				-	0.80	BH5_0.7-0.8 ES 0.70-0.80 m				Hole Terminated at 0.80 m Target depth reached			-
d In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				- 1.0									-
				-									-
EA LIB 1.03.GLB Log IS AU BOREHOLE 3 E24782.E01.GPJ < <drawingfile>> 18/09/2020 16:44 10.0.000 Datgel Lab an</drawingfile>				1.5									-
GLB Log IS AU BOREHOLE 3 E24782.E01.													
EIA LIB 1.03.0						This borehole	log	shoul	d be	read in conjunction with Environmental Investigations Austra	ilia's	accor	npanying standard notes.

Preliminary Site Investigation Project Arden Property Group Pty Ltd Location Refer to Figure 2 Position E24782.E01 Job No. Riveredge Investments Pty Ltd

Client

Contractor Drill Rig Hand Auger

1 OF 1 Sheet Date Started 5/8/20 Date Completed 5/8/20 Logged IW Date:

									Inclination -90°			Checked SE Date:
	Р	_	lling		Sampling	Ę		BOL	Field Material Desc	riptic	n ∧c∧	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	0.10	BH6_0.1-0.2 ES 0.10-0.20 m			-	FILL: Silty sand, fine to medium grained, dark brown, with rootlets, no odour. FILL: Silty clay, medium plasticity, dark brown, with some fine to medium ironstone gravel, ash and sandstone fragments, no			FILL
			-	_	0.10-0.2011			> > >	to medium ironstone gravel, asn and sandstone tragments, no odour.			
			-	_				> > >				
HA	-	GWNE	0.5-	_				> > >		D	-	
			-	-	BH6_0.6-0.7 ES 0.60-0.70 m							
			-	_				> > > >				
			-	_	BH6_0.9-1.0 ES 0.90-1.00 m			> > >				
			-1.0	1.00				× ×	Hole Terminated at 1.00 m Hand Auger refusal on gravel in fill.			
			-									
			-	_								
			-	_								
			1.5 —	-								
			-	_								
			-	-								
			-	_								
			2.0									

Preliminary Site Investigation Project Location Arden Property Group Pty Ltd Refer to Figure 2 Position E24782.E01 Job No. Client Riveredge Investments Pty Ltd

Contractor Drill Rig Hand Auger Inclination -90°

1 OF 1 Sheet Date Started 5/8/20 Date Completed 5/8/20 Logged IW Date: Checked SE Date:

		Dri	ling		Sampling			Field Material Descr	iptio	on	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	
			0.0		BH7_0.1-0.2 ES 0.10-0.20 m		-	FILL: Silty SAND; fine to medium grained, dark brown, with rootlets, no odour			FILL
НА		GWNE		0.60	BH7_0.6-0.7 ES 0.60-0.70 m			From 0.6m, dark brown and pale grey. From 0.7m, with some fine to medium and sub-angular to angular blue metal gravels.	D	-	
		G)		1.00	BH7_1.0-1.1 ES 1.00-1.10 m			From 1.0m, with some clay.			
			- 1.5 —	1.30	BH7_1.5-1.6 ES 1.50-1.60 m			From 1.3m, with some fine to medium and sub-angular to angular ironstone gravels. Silty CLAY; medium plasticity, pale grey mottled red/brown, no odour.			RESIDUAL SOIL
			-	1.60		x		Hole Terminated at 1.60 m Target depth reached			
			2.0—		This borehole	log sho	uld be	read in conjunction with Environmental Investigations Austral	ia's a	accor	npanying standard notes.

Preliminary Site Investigation Project Location Arden Property Group Pty Ltd Refer to Figure 2 Position E24782.E01 Job No. Client Riveredge Investments Pty Ltd

Contractor Drill Rig Hand Auger Inclination -90°

BOREHOLE: BH8

Sheet	1 OF 1
Date Started	5/8/20
Date Completed	5/8/20
Logged IW	Date:
Checked SE	Date:

		Dri	lling		Sampling				Field Material Desc	riptic	on	
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			- 0.0		BH8_0.1-0.2 ES 0.10-0.20 m			-	FILL: Sandy CLAY; low to medium plasticity, dark brown, with some fine to coarse shale gravels, with some concrete fragment and trace rootlets, no odour.			FILL
	-	GWNE		0.60	BH8_0.5-0.6 ES 0.50-0.60 m					D	-	
			-	0.60					Hole Terminated at 0.60 m Hand auger refusal.			
			-									
			-									
			1.0 —									
			-									
			-									
			- 1.5 —									
			-									
			-									
			-									
			-									
	I	I	2.0 —	1	This boreho	le log	g shoul	d be	ead in conjunction with Environmental Investigations Austra	llia's a	accor	npanying standard notes.

ProjectPreliminary Site InvestigationLocationArden Property Group Pty LtdPositionRefer to Figure 2Job No.E24782.E01ClientRiveredge Investments Pty Ltd

Contractor Drill Rig Hand Auger Inclination -90° Sheet1 OF 1Date Started5/8/20Date Complete5/8/20LoggedIWDate:Checked SE

⊢					Inclination -90° Checked SE Date:													
			Dril	ling		Sampling				Field Material Description								
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
				0.0		BH9_0.1-0.2 ES 0.10-0.20 m			-	FILL: Clayey SAND; fine to medium grained, with some fine to medium grained gravels (shale, ironstone and sandstone), with rootlets, no odour.			FILL					
:	НА	-	GWNE	0.5		BH9_0.6-0.7 ES 0.60-0.70 m					D	-						
4.07-05 				-	0.90	0.60-0.70 m				Hole Terminated at 0.90 m								
A 1.03 201										Hand auger refusal.								
16:44 10.0.000 Datgel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Pg: EIA 1.03 2014-07-05				1.0 — - - 1.5 —														
EA LIB 1.03.GLB Log IS AU BOREHOLE 3 E24782.E01.GPJ ≪DrawingFile>> 18/09/2020 16.44 10.0.000 Datget Lab and In				-														
EIA LIB 1.03.GLB Log				2.0—	<u> </u>	This borehole		g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's	accor	mpanying standard notes.					

MONITORING WELL LOG

MW NO. BH1M

	Pro	ject		-		lopment			Sheet	1 of 2
		atior				ng Club, Baulkham Hills NSW			Date Started	03/08/2020
		sition		lefer to	-	2			Date Completed	03/08/2020
		No.		24782.		Crown Dhy Ltd			Logged By IW	Date 03/08/2020
		ent				Group Pty Ltd			Reviewed By SR	Date 01/09/2020
		illing ill Rig	Conta g	ictor		sense DrillingSurface RL≈103.10 m Alin DB8Inclination-90°	HD			
МЕТНОП		WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	ID Type	COMETER CON Stick Up & RL 9.10 m 103.20 m	ISTRUCTION DETA Tip Depth & RL Installa 8.40 m 94.70 m	ILS Date Static Water Level
		ш	-0	-		FILL: Silty SAND; fine to medium grained, grey, with rootlets.		BH1M	Grout	
	AD/T GWNE		-	102 —		FILL: Silty CLAY; medium plasticity, brown, variably compacted, with some ash, bitumen and brick fragments.			Bentonite	
			2—	-	$\overline{}$	weathered.			uPVC 50 m	m Casing
			-	-	\vdash	SHALE; pale grey, very low strength, distinctly weathered, laminated interbedded with extremely low strength, extremely weathered seams.	2.40 m			
			-	100 —		NO CORE; 470 mm thick.				
				-						
			4-	-						
			-	-	\mathbb{N}	From 4.08 m, grading to grey-brown, low strength. NO CORE; 280 mm thick.				
			-	-					· · · · · · · · · · · · · · · · · · ·	m Screen
-09-26			-	98 —					Sand	
0.1 2017			_	_		From 5.56 m, grading to grey-brown, thinly bedded, medium strength, slightly weathered, with some fine grained sandstone				
EIA 2.0			6	-		laminations.				
-21 Prj:			_	-						
2017-1			-	96 —						
A 2.00.3			-	-						
ab and in Situ Tool - DGD Lib: EIA 2.00.3 2017-11-21 Pg: EIA 2.00.1 2017-09-26			8	-			8.40 m			
d - DGD		_	_	-		From 8.66 m, grading to grey, medium bedded, fresh.			Bentonite	
Situ To	,	% RETURN	_	94 —						
b and In Situ		% RE	-	-						
atgel La		06	10 —	_						
0.000			-	-						
9:46 10.			_	92 —						
N2020 0			-	-						
 02/05 			12 —	-						
/ingFile>			-	-						
< <draw< th=""><td></td><td></td><td></td><td>90 —</td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>				90 —						
3S.GPJ			-	-						
DLE LO			14 —	-						
BOREH			-	-						
82.G031			-							
G E2471				-						
ION LOC			16 —	-						
TALLAT			-	-		SANDSTONE; fine to medium grained, pale grey, medium				
EA 200.3 LB.GLB LQ EA PIEZOMETER NSTALLATION LOG E24782 G03BOREHOLE LOGS GPJ < <d awingfile="">> 0209/2020 09:46 10.0.000 Dagel</d>			-	- 86 —	· · · · ·	bedded, medium strength, fresh, with some shale laminations.				
PIEZOME	1		_			Borehole Terminated at 17.21 m, Target Depth Reached.				
g EIA P			18—	-						
.GLB Lo			-	-						
00.3 LIB			-	-						
EIA 2.						This well log should be read in conjunction with I	I Australia's accompanyin	ig standard not	es.	

MONITORING WELL LOG

MW NO. BH2M

	roject		-		lopment		Sheet 1 of 2
	ocatio				ng Club, Baulkham Hills NSW		Date Started 04/08/2020 Date Started 04/08/2020
	ositio		Refer to E24782.	•	2		Date Completed 04/08/2020
	ob No lient	-			Group Pty Ltd		Logged By RS/IW Date 04/08/2020 Reviewed By SR Date 01/09/2020
	lient					_	
	Drilling Drill R	g Cont ig	actor		ense Drilling Surface RL ≈98.50 m AH in DB8 Inclination -90°	D	
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	PIEZOMETER CC ID Type Stick Up & RL BH2M Standpipe -0.10 m 98.60 m	NSTRUCTION DETAILS Tip Depth & RL Installation Date Static Water Level 11.50 m 87.00 m
		-0	-		FILL: Silty SAND; fine to medium grained, dark brown, trace rootlets.	3H2M	
AD/T		2-	98		FILL: Silty CLAY; medium plasticity, pale grey-brown, with fine to coarse, angular to sub-angular gravel.		- Grout
17-11-21 Pg: EM 2.00.1 2017-09-26	$\[\] \]$	4	94		SHALE; pale grey-brown, very low strength, extremely to distinctly weathered.		Bentonite
.00.3 20					From 5.5 m, grading to very low to low strength.	5.50 m	
Datgel Lab and In Situ Tool - DGD Lib: E.A 2,00.3 2017-11-21 Pg: E.A 2,00.1 2017-09-26		6	92		SHALE: dark grey-brown, indistinctly laminated at 0 to 10 °, low strength, distinctly weathered.		
	URN	- 8 -	90		NO CORE; 160 mm thick.		uPVC 50 mm Screen
	80-90% RETURN	10 —	 - 88		medium strength, slightly weathered.		
TER INSTALLATION LOG E247820		12—		· · · · · ·	From 11.0 m, fresh. From 11.9 to 12.0 m, pale grey. From 12.15 m, with 60% pale grey, fine grained sandstone laminations, bedded to 45 mm thick.	11.50 m	Bentonite
2.00.3 LIB.GLB Log EIA PIEZOME				-	SANDSTONE; fine grained, pale grey, 10 % carbonaceous laminations at 0 to 10°. Borehole Terminated at 12.59 m, Target Depth Reached. This well log should be read in conjunction with I	-I Australia's accompanying standard or	otes
Ĺ							

MONITORING WELL LOG

MW NO. BH4M

		oject				lopment ng Club, Baulkham Hills NSW				Sheet	1 of 2
		catio sitior		Refer to						Date Started Date Completed	04/08/2020 05/08/2020
		o No.	E	24782.	E01					Logged By RS	Date 04/08/2020
		ent			roperty	Group Pty Ltd				Reviewed By SR	Date 01/09/2020
			g Cont	actor		ense Drilling Surface RL ≈103.80 m AH	ID				
	Dr	ill Ri	g	1	Hanj	n DB8 Inclination -90°					
METHOD		WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG		ID BH4M	Type Standpipe	PIEZOMETER CO Stick Up & RL	NSTRUCTION DETA Tip Depth & RL Installa 7.50 m 96.30 m	ILS ation Date Static Water Level
	5		-0-	-	\sim	ASPHALT; 50 mm thick pavement.			¥		
				- 1		FILL: Gravelly SAND; fine to medium grained sand, pale grey, with some medium, angular to sub-angular blue metal gravel.			BH4M		
			-			SHALE; brown-pale grey, very low strength, extremely to distinctly weathered, with some extremely weathered seams.				 Bentonite 	
			-	102							
			2—	- 1							
			-								m Casing
			-	-							
			4—	100 —							
			-				4.50 m				
			-	- 1		From 4.7 m, with slight chemical odour.				Sand	
26	1	\triangleright	-	98							
2017-09-			6—							uPVC 50 m	nm Screen
V 2.00.1			-								
1 Prj: EV			-	-			7.50 m				
017-11-2	1		8-	96 —		SHALE; dark grey, with 15% fine grained, pale grey, sandstone laminations at 0 to 15°, medium strength, slightly weathered.				Bentonite	
2.00.3 2(-	-							
Lab and In Situ Tool - DGD Lib: EIA 2,00.3 2017-11-21 Pg: EIA 2,00.1 2017-09-26			-	-							
- DGD			-	-							
Situ Tool			10 —	94 —							
and In			-	- 1							
atgel Lat			-	-							
0.000 D			-	92 —							
9:46 10.		_	12 —	- 1							
9/2020 0		90-95% RETURN	-	-							
>> 02/09/2		5% RE	-	- 1							
awingFile		36-06	14 —	90							
J < <dra< th=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<>			-	-							
OGS.GP			-								
HOLE L			-	88-							
03 B ORE			16 —	- 1	·						
24782.GI			-								
LOG E2			-	-							
LATION			- 18 —	86							
INSTALI			-	-							
METER			-								
A PIEZO			-	- 1		Borehole Terminated at 19.04 m, Target Depth Reached.					
Log El/			20 —	84							
EA 200.3 LIB.GLB LOG EIA PIEZOMETER NSTALLATION LOG E24782.603 BOREHOLE LOGS.GPJ < <drampfile>> 020927020 09:46 10.0.000 Dargel</drampfile>			-	- 1							
12:00.31			-	I	L	This well log should be read in conjunction with E	I Australia	's accom	panying standard no	tes.	
ΕÞ								2.00011			

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geotechnical			•••			
DRILLING/EXCAVATI	ON METHOD	RR	Rock Roller		RH	Rock Hammer
HA Hand Aug	ler	RD	Rotary blade or c	irag bit	NQ	Diamond Core - 47 mm
DTC Diatube C	0	RT	Rotary Tricone bi	t	NMLC	Diamond Core - 52 mm
	ructive digging	RAB	Rotary Air Blast		HQ HMLC	Diamond Core - 63 mm
AS* Auger Scr	-	RC	Reverse Circulati	on	-	Diamond Core - 63mm
D* Auger Dril	lling	PT	Push Tube		BH	Tractor Mounted Backhoe
V V-Bit		CT	Cable Tool Rig		EX	Tracked Hydraulic Excavator
T TC-Bit, e.	•	JET	Jetting		EE	Existing Excavation
		WB	Washbore or Bai	er	HAND	Excavated by Hand Methods
PENETRATION/EXCA			ion possible with littl	o offort from		lead
			•		• •	
			•	•		ate effort from equipment used.
H High resistant	ce. Penetration/ ex	cavation is p	possible but at a slo	w rate and r	requires sign	ificant effort from equipment used.
R Refusal/ Pract	tical Refusal. No	further prog	gress possible witho	ut risk of da	mage or una	cceptable wear to equipment used.
hese assessments are su excavation or drilling tools	-			uding equipr	ment power a	and weight, condition of
VATER						
\mathbf{Y}	Water level at d	ate shown		\triangleleft	Partial wate	er loss
\triangleright	Water inflow			◀	Complete v	water loss
GROUNDWATER	Observation of or cave-in of the			or not, was	s not possible	e due to drilling water, surface seepage
GROUNDWATER						er could be present in less permeable left open for a longer period.
SAMPLING AND TES	TING					
seating 30/80mm RW HW HB	Penetration oc	curred unde curred unde	curs, the blows and er the rod weight on er the hammer and r on anvil	Iy		rval are reported
Sampling		-				
DS	Disturbed Sam	•				
BDS	Bulk disturbed	Sample				
S VS	Gas Sample					
vs 163	Water Sample		number indicates n	ominal sam	nlo diamotor	in millimotros
		se sample -		unnai sam		in minimetes
esting P	Field Permosh	ility tost ovo	er section noted			
- VS				ed shear st	renath (sv = r	peak value, sr = residual value)
PID	Photoionisation	•				
PM	Pressuremeter		0 11			
P			expressed as instru	ment readir	ng in kPa	
VPT	Water Pressur		-		-	
CP	Dynamic Cone	Penetrome	eter test			
PT	Static Cone Pe					
PTu			st with pore pressur			
<u> </u>						soil contamination assessment
	sible evidence of co			R = A R = B		ural odours identified
- 5 -	evidence of visible	contaminat		R=B R=C	-	atural odours identified
	e contamination	nination		R=C R=D		on-natural odours identified
	icant visible contan	mation		к - D	Suong non-	natural odours identified
Ũ						
OCK CORE RECOVE			o		-	
ROCK CORE RECOVE	overy (%)		= Solid Core Reco			RQD = Rock Quality Designation (%)
ROCK CORE RECOVE	overy (%)		= Solid Core Reconnected shofcylindrical core r Lengh of core run			RQD = Rock Quality Designation (%) EAxial Lenghts of core>100mm Lengh of core run x 100
ROCK CORE RECOVE TCR = Total Core Rec Length of core recevered	overy (%) ^d x 100		h ofcylindrical core r			

eiaust Contamination Remediation	ralia			USED C			SOIL DESCR AND TEST PI	
	FILL		.000.	RGANIC SC DL, OH or Pt		 	CLAY (CL, C	CI or CH)
		BLES or _DERS	**** **** ****	ILT (ML or N	1H)		SAND (SP c	or SW)
	GRAV GW)	/EL (GP or	Combination sandy clay	s of these basic s	symbols may b	e used to i	ndicate mixed mater	ials such as
Soil is broad	ly classifie	d and described ir	STRATIGRAPH Borehole and Test aterial properties ar	Pit Logs using th	ne preferred m e field by visua	ethod giver Il/tactile me	n in AS1726 – 1993, ethods.	(Amdt1 –
PARTICLE	SIZE CH	ARACTERIST	cs	USCS SY	MBOLS			
Major Divi		Sub Division	Particle Size	Major D	Divisions	Symbol	Descrip	
	BOULDE	ERS	>200 mm	ي ع	o of are	GW	Well graded grav sand mixtures, lit	
	COBBL	ES	63 to 200 mm	LS iles	50% ins a	GP	Poorly graded gra	vel and gravel-
		Coarse	20 to 63 mm	0.0 ר	than 5(se grain >2.mm	-	sand mixtures, lit Silty gravel, gra	
GRAVE	EL	Medium	6 to 20 mm	than that	More than 50% of coarse grains are >2.mm	GM	mixtur	es.
		Fine	2 to 6 mm	by c ater	Mo	GC	Clayey gravel, gra mixtur	
SAND		Coarse Medium	0.6 to 2 mm 0.2 to 0.6 mm	3 7 1 COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are <2 mm	SW	Well graded sand sand, little or	no fines.
0, 112		Fine	0.075 to 0.2mm	m than	se gi 2 m	SP	Poorly graded sar sand, little or	
	SILT	-	0.002 to 0.075 m		re th oars	SM	Silty sand, sand	-silt mixtures.
	CLA		<0.002 mm	tha T	of c	SC	Clayey sand, mixtur	
	PLAS			.s nass than		ML	Inorganic silts of very fine sands, i	low plasticity, ock flour, silty
), parcent		c	H	FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silty	low to medium y clays, sandy
INDEX { I_0}	20	CL CI .N		FINE GRAINED More than 50% by ess than 63mm is	Liqu	OL	Organic silts and clays of low	d organic silty
QNI			он	LE G than	פ^ ריי	MH	Inorganic silts of Inorganic clays of	high plasticity.
STICITY	10 CL-M	OL or ML	MH	FII More less	Liquid Limit > than 50%	CH OH	Organic clays of r plastic	nedium to high
PLAST	20		60 70			PT	Peat muck and	other highly
		LIQUID LIMIT (WL),	percent				organic	soils.
MOISTUR	1							
Symbol D	Term Dry	Description Sands and grave	els are free flowing.	Clays & Silts ma	y be brittle or	friable and	powderv.	
M	Moist		than in the dry cond					
W	Wet		water. Sands and g					
		ohesive soils may than, « much less		n relation to plast	ic limit (WP) o	r liquid limi	t (WL) [» much great	er than,
CONSISTEN			-	DENSITY				
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS S	Very So Soft		12 kPa 25 kPa	VL I	Very Loo Loose	se	< 15 15 to 35	0 to 4 4 to 10
F	Firm	25 to	50 kPa	MD	Medium De	nsity	35 to 65	10 to 30
St VSt	Stiff		100 kPa	D VD	Dense Vory Don		65 to 85	30 to 50
VSt H	Very Sti Hard		200 kPa 200 kPa		Very Den	30	Above 85	Above 50
In the absen # SPT correl	ce of test r	esults, consistenc	y and density may b	be assessed from by be subject to co	correlations vorrections for o	vith the obs	served behaviour of t pressure and equipr	he material. ment type.
MINOR CO	MPONE	NTS						
Term		nent Guide e just detectable b	y feel or eye but soi	l properties little			pportion by Mass e grained soils: $\leq 5\%$,
Trace	or no diff	erent to general p	roperties of primary by feel or eye but s	component	e		grained soil: ≤15% grained soils: 5 - 12	%
Some	or no diff	erent to general p	roperties of primary	component		Fine g	rained soil: 15 - 30%)

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
#			Deinst Lead Other with Index Jan Avial test (MDa)

[#]Rock Strength Test Results

◀

Point Load Strength Index, $Is_{\rm (50)},$ Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK	MATER		
Sym	bol	Term	Field Guide
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
EW	EW Extremely Weather		Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.
SW	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.
FR		Fresh	Rock shows no sign of decomposition or staining.

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Layering					Struc	ture													
Term		Descr	intion		Term				Spacing (mm										
Term		Desci	iption				nated												
Massive		No lay	ering apparent		Lami	·	naleu		6 – 20										
		Lovori	na juot vioiblo: litt	lo offoot on			bedded		20 - 60										
Poorly Devel	oped	proper	ng just visible; litt ties	le effect off	-	y bed			60 - 200										
		· ·	ng (bedding, folia	tion closurado)		um be			200 - 600										
Well Develop	bed		t; rock breaks m			ly bec			600 - 2,000										
			el to layering				y bedded		> 2,000										
ABBREVIAT	IONS A		CRIPTIONS FO	R DEFECT TYP			, 		·										
Defect Type		Abbr.	Description																
Joint		JT	Surface of a fra or no tensile str acts as cement	ength. May be c	r parting, formed without displacement, across which the rock has little May be closed or filled by air, water or soil or rock substance, which														
Bedding Par	ting	BP	sub-parallel to la indicating orient	ayering/ bedding ation during dep	j. Beddi osition,	ng ref resuli	ers to the la ting in plana	yering c r anisot	no tensile strength, parallel r stratification of a rock, ropy in the rock material.										
Foliation		FL							endicular to the direction of (SH) and Gneissosity.										
Contact		CO	The surface bet																
Cleavage CL Cleavage planes appear as parallel, closely spaced and planar surfaces resulting from mechanical fracturing of rock through deformation or metamorphism, independent of beddir																			
Sheared Seam/ Zone (Fault) SS/SZ Seam or zone with roughly parallel almost planar boundaries of rock substance cut by clos spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage planar																			
Crushed Sea Zone (Fault)		CS/CZ	with roughly par		r bound	aries.			is of the host rock substanc ments may be of clay, silt,										
Decomposed Seam/ Zone		DS/DZ	Seam of soil su material in place		ith grad	ationa	al boundarie	s, forme	ed by weathering of the rock										
Infilled Seam	ı	IS	formed by soil r	nigrating into joir	nt or ope	en cav	/ity.		roughly parallel boundaries										
Schistocity		SH	of platy or prism	natic mineral gra	her coarse grained crystalline rock due to the parallel arrang al grains, such as mica.														
Vein		VN	Distinct sheet-li or crack-seal gr		als crys	stallise	ed within roc	k throu	h typically open-space fillin										
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE ANI	D ROI	JGHNESS												
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Desc	cription												
Planar	PI	Consis	stent orientation	Polished	Pol	Shin	y smooth su	rface											
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ed surfa	ace, usually polished										
Undulating	Un	Wavy	surface	Smooth	S			Few o	Unentation										
2																			
Stepped	St	define	r more well d steps	Rough	RF	-1mi	m). Feels lik	e fine to	ularities (amplitude general coarse sandpaper										
Stepped Irregular	St Ir	define Many in orie	r more well d steps sharp changes ntation	Very Rough	VR	<1m Many >1m	m). Feels lik y large surfa m. Feels like	e fine to ce irreg very co	ularities (amplitude general										
Stepped Irregular		define Many in orie	r more well d steps sharp changes	Very Rough The dip (inclination	VR on from	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co lefect.	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper										
Stepped Irregular Orientation:	lr	define Many in orie Vertic Inclin	r more well d steps sharp changes ntation cal Boreholes –	Very Rough The dip (inclination The inclination is	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co lefect. ingle to	ularities (amplitude general o coarse sandpaper ularities, amplitude general parse sandpaper the core axis.										
Stepped Irregular Orientation:	lr	define Many in orie Vertio Inclir	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the o s the acute a	e fine to ce irreg very co lefect. ingle to	ularities (amplitude general o coarse sandpaper ularities, amplitude general parse sandpaper the core axis.										
Stepped Irregular Orientation: ABBREVIATI	Ir ONS A Abbr.	define Many in orie Vertic Inclir ND DES Descrip	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c s the acute a DEFECT A	e fine to ce irreg very co defect. ngle to PERTU	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE										
Stepped Irregular Orientation:	Ir ONS A Abbr. CN	define Many in orie Vertie Inclin ND DES Descrip No visib	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA ing faces are discol	VR on from s measu TING	<1mi Many >1mi horizc ired as	m). Feels lik y large surfa m. Feels like ontal) of the c s the acute a DEFECT AF	e fine to ce irreg very co defect. ngle to PERTUI Abbr.	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE Description										

Appendix I – Field Data Sheets

WATER SAMPLING FIELD SHEET

							elaustralia
ess: Th	e Hills	Bouldas	Clube	Baukha	m Hells	Job Num	ber: F24772
Ada	Group)	- unpr			Date: (4/8/20
	1					the second s	Location ID BH(M
	[21112
	R	Groundwa	ter DS	Surface Wa	ater		
statement of the second second		oroundwa			ater		
		E11				Stick up /	down (m): \mathcal{O}_{ι} (+ above ground - below ground)
	11	0					terval (mBTOC): $z_1 3 - f_1 3$
		8.7					
	Date:					Previous	SWL (MBTOC):
	1						
						РІД Васк	ground (ppm):
and the second se	e (ppm):						
		0.0					j j
		8.3					00000
						Water Co	lumn (m): 5,26
SEPARATE	ED HYDRO	DCARBON	IS (PSH)				
						PSH Visu	ally Confirmed (Bailer):
ckness (mr	n):						
AND SAM	PLE						
g Method		Bladde	r l	Peristalti	c 🗆	Submersil	ble DOther:
	t (mBTOC	1 -				Fill Timer	5
		the second se					e Timer: (D
							CPM 4
		e					
and the second se		FRS				n unp on	uno.
		LINO				Bump Te	st Date and Time:
1	1	Temp	FC	Redox	DO	Statement of the local data was not the	
(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)
0,5		22.38	1626	11.5	0,0	645	light grey, (ow no no
		22.38	1615	11.4	DeD	6.46	
(,)		72,38	1600	11.3	0.0	6.46	
			1598	11.2	0.0	6.46	
1.F			1093	11-0	20	6.46	
2				11.0	0.0		
			_				
						1	1
bilisation ra		+0.2°C	+3%	+20mV	+10%	+0.2	
bilisation ra		±0.2°C	±3%	±20mV	±10%	±0.2	
	adings			±20mV	±10%	±0.2	
secutive re	adings			±20mV	±10%	±0.2	
secutive re	adings			±20mV	±10%	±0.2	
secutive re	adings			±20mV	±10%	±0.2	
secutive re	adings			±20mV	±10%	±0.2	
	Ard end ff: [Cation: NG POINT allation Da ell Depth (m Sampling DINGS dspace (pp thing Space dspace (pp thing Space GE ell Depth (m 3TOC): SEPARATI PSH (mBT ckness (mr AND SAMI g Method Pump Inle essure Reg Conditions time: [QUALITY ake and Mo Volume (L) Q (S)	Ard en Group ff: [9 ation: NG POINT INFO allation Date: 3/ ell Depth (mBTOC): Sampling Date: DINGS dspace (ppm): thing Space (ppm): thing Space (ppm): thing Space (ppm): TRGE ell Depth (mBTOC): STOC): 3, 044 SEPARATED HYDRO PSH (mBTOC): ckness (mm): AND SAMPLE g Method Pump Inlet (mBTOC) essure Regulator (ps Conditions: 10 time: (1245 QUALITY PARAMET ake and Model: Volume SWL (L) (mbtoc) 0, 5	AIden Group ff: 19 ation: Image: Construction of the second s	Ard en Group ff: 9 ation: Image: Groundwater Image: Signal Structure NG POINT INFO allation Date: $3/8/2\omega$ allation Date: $3/8/2\omega$ all Depth (mBTOC): $8/3$ Sampling Date: DINGS dspace (ppm):	Ard on Group ff: 19 ation: Image: Construction of the system NG POINT INFO allation Date: $3/8/2\omega$ allation Date: $3/8/2\omega$ one of the system allog of the system $5/8/2\omega$ one of the system all Depth (mBTOC): $5/3$ $3/7$ all Depth (mBTOC): $5/3$ $3/7$ astring Space (ppm): $3/7$ $3/7$ PSH (mBTOC): $5/3$ $3/7$ cheeses (mm): $4/7$ $4/7$ AND SAMPLE $9/7$ $9/7$ g Method $1/7$ $2/7$ on of the system $1/7$ $3/7$ on of the system <	At d en Group ff: 9 ation: Image: Condition Conditer Conditer Condition Conditicon Condition Conditic	Ard on Group Date: $(1, 1)$ Date: $(1, 2)$ Date: Date: Date: <thdate:< th=""> <t< td=""></t<></thdate:<>

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604 - BAedit

		WATER	SAMPLI	NG FIELD	O SHEET			eiaustralia
Site Addre	ess: The	e 14/15	Bouldag	Club. E	Cal Khen	1 tills	Job Num	ber: E24782
Client:	Arde	'n Gru	412				Date:	14/8/20
Field Staf		9	-k					Location ID BH2M
Well Loca	tion:						Round No	
MEDIUM		M	Groundwa	ter DS	Surface Wa	ator	□Stormw	
SAMPLIN			Groundwa				Lotonnw	
Well Insta			16/202				Stick up /	down (m): -0, ((+ above ground - below ground)
		4	18/20					
Initial We			11.4	/				nterval (mBTOC): 5,4-11,4
Previous		Date:					Previous	SWL (mBTOC):
PID REAL							,	
PID Head							PID Back	ground (ppm):
PID Breat	hing Spac	e (ppm):						
PRE PUR	GE							
Total Wel	I Depth (m	BTOC):	11.4				Well Hea	d Condition: Good
SWL (mB	TOC):	5.15	(Water Co	lumn (m): 6.25
No. of Concession, Name of	And and a rest of the local division of the	and the second se	CARBON	IS (PSH)				
Depth to I				. ,			PSH Visu	ally Confirmed (Bailer):
PSH Thic								
PURGE A								
Sampling		la la	Bladde		□Peristalti		Submersit	
			,		Penstalli	C L		
		t (mBTOC	1				Fill Timer	
		gulator (ps					Discharge	
Weather (1 100	e				Cycle:	CP/K4
Pump on		10:25					Pump off	time: ID: GO
WATER O	QUALITY	PARAMET	TERS					
Probe Ma	ke and Mo	odel:					Bump Tes	st Date and Time:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
10=30	0.5		21.84	1867	-22.1	0	7.5	Grey, medium, no, no,
[0=3]			21.84	1901	-18,1	O	7.5	
(0=32	(10		21.84	1908	1-18.0	0	7,5	
10=33			2184	1918	-18.0	0	7.5	
17=134	1.5		21.84	1920		0	7.5	
				(
-								
Stab	ilisation ra	inge:						
3 cons	ecutive re	adings	±0.2°C	±3%	±20mV	±10%	±0.2	
			RVATIONS	: Gu	QD1,	Gwa	27(,	
SIGNATU	RE:			cho				
			(0.				

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604 - BAedit

WATER	SAMPLING	FIELD	SHEET

Site Addr	ess: Th	e Hills	Boylinc	Club,	Balkhe	im Hulls	Job Num	ber: (-247.82
Client:		len Gr				(1:112	Date:	14 (8/20
Field Staf		4					Sampling	Location ID BH4M
Well Loca	ation:	_					Round No	
MEDIUM		X	Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	
SAMPLIN	IG POINT	INFO						
Well Insta	allation Dat	te: /1	18/2	7			Stick up /	down (m): -((+ above ground - below ground)
Initial We	ll Depth (m	BTOC):	511		1			terval (mBTOC): 4.4-7.4
	Sampling I							SWL (mBTOC):
PID REAL								
	space (pp	m):					PID Back	ground (ppm):
	hing Spac							3 (PP).
PRE PUR	of the second state of the	<u> </u>						
	I Depth (m	BTOC):	7.4				Well Head	d Condition: Good
SWL (mB		4.8	7					lumn (m): 2.52
the second se		110	CARBON	IS (PSH)				2131
	PSH (mBT			- ()			PSH Visu	ally Confirmed (Bailer):
	kness (mn	,						
		1						
Sampling		Ann Ann	Bladde	r [⊐Peristalti	с П	Submersit	ole DOther:
	Pump Inlet	(mPTOC		1 L			Fill Timer:	
	essure Reg		0				Discharge	
	Conditions		15					
			ine				Cycle:	CPM4
Pump on	the second s	11200	500				Pump off	time: [[=(5
	QUALITY I		ERS				Dunna Ta	t Data and Times
Probe Ma	ke and Mo		_		-			st Date and Time:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
11205	OF		22.51	813	-1.8	0,18	6.75	light grey, low, no, no
11206			22,5	808	-1.7	0.16	6.75	
11207	(,0		22.50	805	-46	0.16	675	
11:04			22.50	804	1.5	D.15	6.75	
11=09	1,5		7/251)	fo1	-1.3	a15	6.75	4
							0.	
								14 (14)
In the last of the first of the	ilisation ra ecutive rea		±0.2°C	±3%	±20mV	±10%	±0.2	
	A CARD CARD		VATIONS	:				· · · · · · · · · · · · · · · · · · ·
SIGNATU	RE:			A.	4			
				010				

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604 - BAedit

Appendix J – Chain Of Custody and Sample Receipt Forms

Sheet of	4	112	01	1.21		Sam	ple N	Aatrix							_	Ana	lysis							Comments
site: The Hills B Baulkham Laboratory:	owling Hills SGS Aus Unit 16, ALEXAN	Club,	Street, 2015	Pro E)4782			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	/ТКН/ВТЕХ				. Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	×		2		I ^B / PAH	HMA Arsenic Cadmlum Chromium Copper Lead Mercury Nickel Zinc HMB
Sample	Laboratory	Container		Sampli	ng	R		ERS (A /1 POP	A /TI	A/TI	X	S	Asbestos	Asbestos	CEC	EC (ateri	sPOCAS	S	HOLI		MH	Arsenic Cadmium Chromium
ID	ID	Туре	Da	ate	Time	WATER	SOIL	OTH	ΨÖ	ΗM	HM A	втех	VOCs	Asb	Asb	Hd /	/Hd	Dew	sPO	PFAS	上		TCLP	Lead Mercury
BHM_02-03		J.ZLB	5/8	120			X			_								_			X			Nickel Dewatering Sulte
BHIM_0.7-0.8	1	1							X		\$	4												pH & EC TDS / Turbidity NTU
BHIM_1.2.1.3		V						14 J		14		1	10	_					_		X			Hardness Total Cyanide Metals (Al, As, Cd, Cr,
BHM_1-6-1-7		J								4 3											T			Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
BH2M-0.1-0.2	2	T, 213			í.				X					_										BTEX PAH Total Phenol
BH2M_ 0.6-0-7																					X			LABORATORY
BH2A1-1-1-1-2	_																	-		i de				TURNAROUND
BH2M-1-6-17														s Syd						_	1			24 Hours
BH211-2-2-2		- -										SI	E2(09	734	4			_					48 Hours
BH21 262.7																								72 Hours
BH2M-3.2-3.3		V								\neg											\downarrow			Other
BH2M-45-46	>	T	V				V			Х	1				- 1						·			
Container Type: J= solvent washed, acid S= solvent washed, acid P= natural HDPE plastic	d rinsed glas bottle		s jar							standa			ampli	ng pro	cedur	es.	corda	псе				Waste Cl	assificati	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag	eptum						Sampl Prin		me (El):	Wat	4.6		Receil Prin	t d	Ees):	7	1				Comm		0	100
		S	uite 6 (1 55	Miller Str	eet	Sign			-	2		Sign			ty	14	4	Ť	105	0 (CC	Ben	Aggar
			PYRM	IONT N	ISW 200		Date	1	lalan				Date	(17) (0/1	11-		·t	he	7	elon-	¥	
eiaust	ralia	a i		: 9516 iaustra	0722 lia.com.a	au I	IMP	,	8/20 ANT	_			6/	8/1	200	24	.10	_				(011		
Contamination Remedia	tion I Geotechn	cat	-	ch 2018 FORM					ail lab		y resu	Its to:	lab@	Deiau	Istral	lia.co	m.au							

Sheet 2 of	4				Sam	ple N	/latrix								Ana	lysis								Comments
Site:		-		Project No:												()		*						HM A Arsenic
AS F	irst	Pag	U	E24782			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	AHs					ation	pH / CEC (cation exchange)	pH / EC (electrical conductivity)				999	20			Cadmium Chromium Copper Lead
Laboratory:	SGS Au	stralia 33 Maddox 3	Street.				o, Pai	Asbe	EX/P	X				ntifice	on ex	ical o	ite				PCH		PAH	Mercury •Nickel Zinc
	ALEXAN	DRIA NSW 94 0400 F: 0	2015	1400			a. Fibr	PCB/	H/BT	H/BT				Quai	(catik	electr	ng Su			9	120		100	HMB
1.5				Sampling	œ		RS (L	A /TF	HM ^A /TRH/BTEX/PAHs	HM A /TRH/BTEX	×	S	Asbestos	Asbestos Quantification	CEC	EC (e	Dewatering Suite	sPOCAS	s	10	510		P HM	Arsenic Cadmium Chromium
Sample ID	Laboratory ID	Container Type	Date	e Time	WATER	SolL	OTHE	HM 2	MH	HM	BTEX	VOCs	Asbe	Asb.	Hq/Hd	/Hq	Dew	ods	PFAS	T	00		TCLP	Lead Mercury
BH3_02-03	4	J.ZLR	5/8	120		X		X																Nickel Dewatering Suite
BH3_06-0.7	•	0,20,						- 1												Х				pH & EC TDS / Turbidity NTU
BH3-1-1-1-2														<u> </u>										Hardness Total Cyanide Metals (Al, As, Cd, Cr,
																					-			Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
BH3-1-6-1-7		1				H^{-}												4			-			BTEX PAH
BH3-21-22		J		-					_												<u> </u>			Total Phenol LABORATORY
BH3_2-6-2-7											-	-								$\left \right $	-			TURNAROUND
BH3_3.7-3,8		J	-																	$\left \right $	-			Standard
BH4-0-1-0.2	-	J. 2LB					-													V				24 Hours
BH4-05-06		V					-	X			ļ							,			-			48 Hours
B-14-1-5-1-6		7					ļ				<u> </u>									X				72 Hours
BH4- 5.0-55	6	J							X												X			Other
BH5-0-1-0.2	7	J.2113	V			V		X																
J= solvent washed, aci S= solvent washed, ac	Container Type: = solvent washed, acid rinsed,Teflon sealed, glass jar = solvent washed, acid rinsed glass bottle = natural HDPE plastic bottle							_	stand			nples v sampli				ccord	ance	F	Report	with E	I Wast	e Class	sificatio	on Table
VC= glass vial, Teflon	VC≕ glass vial, Teflon Septum ZLB = Zip-Lock Bag							ame (El):			Rece Prin	ived by	(SGS)	: K	P .		Sam	pler's	Comr	nents:			
								A	Wa	tts-		a		C'	l	72	~	A	5	fi	irs-	t	Pa	ze
	Suite 6.01, 55 Miller S PYRMONT NSW 20							Themes of							l°,	<i>y</i> -								
oiguis	trali	2		9516 0722	09 Date 7/8/20 Date 2/8/20 @4:10																			
Contamination Remote	Contamunation Remitted at on Gentechnical lab@eiaustralia.co							TANT				. Joh	-	. Inter	lie e	0.000								
1		2018 FORM V.4 - SGS		Plea	ise e-r	nail lat	porato	ry res	ults to	: Iau(weia	USITE	and.C	om.a	u									

	Sheet of	4	_			m inter	Sam	ple N	/latrix					· · · · · · · · · · · · · · · · · · ·			Ana	lysis				-				Comments
	Site:				Pro	oject No:												()								HM A Arsenic
	As firs	tí	age	_	Б:	24782			nt, etc.)	PAHs stos	AHs					ition	change)	onductivit								Cadmium Chromium Copper Lead
	Laboratory:	ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	2015	0499	4		5	OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM Å /TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ing Suite			0			M ^B / PAH	Mercury Nickel Zinc HM 본 Arsenic
	Sample	Laboratory	Container		Sampli	ng	WATER		IERS	P/01	AA	A/T	втех	vocs	Asbestos	besto	/ CE	/ EC	Dewatering	sPOCAS	PFAS	HOL			TCLP HM	Cadmium Chromium
	ID	ID	Туре	Dat		Time	WA.	SOIL	Ġ	ΝHΟ		₽	BT	>	As	Asi	Hd	Hđ	Ō	sP(PF	1			2	Lead Mercury Nickel
	BH5-0-7-0-8		3	5/8/	120			X			X															Dewatering Suite
	BH6-01-02		J.ZLB	1																		Х				pH & EC TDS / Turbidity NTU Hardness
	Brt6-0.6-07	9								X										•						Total Cyanide Metals (Al, As, Cd, Cr.
	13+16-0-9-1-0		V																			Ж				Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
	BH7-0-1-02		J.ZLB																							PAH Total Phenol
	13+17-06-07																					V				LABORATORY
		0	V							Х																Standard
ø	BH7-1-5-1-6		J								X															24 Hours
	BH8-0.1-0-2	2	J.ZLB							Х																48 Hours
	BH8_0.5-0.6		V																			Х				72 Hours
	BH9-01-02	3	J, 248							Х																Other
	BH9_0.6-0.7			1	/			J		*												Х				<u> </u>
	container Type: = solvent washed, acid rinsed,Teflon sealed, glass jar = solvent washed, acid rinsed glass bottle = natural HDPE plastic bottle							Inves	tigato	r: I atte with	est tha stand	at thes ard El	e sam field s	ples w sampli	vere co ng pro	ollecte	ed in a res.	ccorda	ince	' R	leport	with El	Waste	Classi	ficatio	n Table
	VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag							Samp Prir	ler's Na	ime (El)):			Recei Prin	ved by	(SGS):				Sam	pler's	Comm	ients:			
ľ									Ian watts Bayin As frit							2	70/									
	Suite 6.01, 55 Miller S PYRMONT NSW 20								ature	Eh.	tom		-		ature	0	1			1.4		Λ.,) [l	Je
	oisuct	ralia	2	Ph:	9516	6 0722		Date 7/8/20 Date 6/8/20 @4:10																		
		lia.com.a																								
		Contamination Remetiation Geotechnical COC March 2018 FORM v.4 - SGS								nail lab	orato	ry resu	ults to:	lab@	Deia	ustra	lia.co	m.au	ı							

Sheet_4 of	4				Sam	ple N	latrix								Ana	lysis								Comments
site: AS Lord	~ In	zl		Project No: E 24782			tc.)	s s	Ś					ſ	inge)	ductivity)								HM A Arsenic Cadmium Chromium Copper
Laboratory:	SGS Au Unit 16, ALEXAN		Street, 2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHS	HM ^A /TRH/BTEX			Ş	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite		-	LD .			M ^B / PAH	Lead Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample	Laboratory	Container	S	ampling	WATER		HERS	P/OI	A A /T	ΛÅ/Ţ	BTEX	VOCs	Asbestos	besto	I/ CE	/ EC	watei	sPOCAS	PFAS	HOH			TCLP HM	Cadmium Chromium Lead
ID	ID	Туре	Date	, 	WA	SOIL	Б.	ΞŎ	H	H	B	×	As	As	Hd	Hd	De	с, С	Ц				TC	Mercury Nickel
QDI	14	J	5/8/	20		Y				X														Dewatering Suite pH & EC
QRI	15	SPVC			χ					X														TDS / Turbidily NTU Hardness
QRBI	16	S, P, VC			χ											_				Х				Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
QTBI	17 /		Dro P	and		X					X													TRH (F1, F2, F3, F4) BTEX
QTSL	18	ab	TET	orrept.		X					X													PAH Total Phenol
K 121																								LABORATORY
					1											2								Standard
																		-						24 Hours
																								48 Hours
										L														72 Hours
																								Other
						-																		
Container Type: J= solvent washed, ac	id rinsed.Te	fon sealed, cla	ss jar		<u>I. </u>	Inve	stigato	br: I atte								ccord	ance		Renort	with F	Wast		sificati	on Table
S= solvent washed, and P= natural HDPE plass	id rinsed gla							_	-	lard E	l field	sampl											311086	
VC= glass vial, Teflon ZLB = Zlp-Lock Bag						Sam	int 7	ame (El				Rece Pri	ived by nt	(SGS):	1	C	_	Sam	pler's	Comr	nents:			
				CC Miller O		Sig	nature	an .	wa-	tts	<u>,</u>	Sigr	nature	5.		17)	A	5	17-	1-+	V	a	
Suite 6.01, 55 Miller Str PYRMONT NSW 200							and a									112		ľ	0					
oialic	trali	а	Ph:	9516 0722 Justralia.com			718/20 68/20 4.10												1					
Contamination Remo	diation Geotec	.au			TAN1 mail lal		orv res	sults to	: lab	@eia	ustra	lia.co	om.a	u										

Yin, Emily (Sydney)

From: Sent: To: Cc: Subject:	Benjamin Aggar - ElAustralia <benjamin.aggar@eiaustralia.com.au> Monday, 10 August 2020 9:14 AM AU.SampleReceipt.Sydney (Sydney); AU.Environmental.Sydney (Sydney) Ian Watts - ElAustralia; Linda Xiao - ElAustralia; Lance Chen - ElAustralia IEXTERNALL RE: SCS Sample Reseipt Advises (Ref. 524702 The UKW Providence)</benjamin.aggar@eiaustralia.com.au>
Subject:	[EXTERNAL] RE: SGS Sample Receipt Advice (Ref: E24782 The Hills Bowling Club, Baulkham, Lab Ref: SE209734)

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi SGS.

Please add VOCs to sample BH4_5.0-5.5

Kind regards,

Ben Aggar Environmental Engineer Project Coordinator

T (02) 9516 0722 M 0435 759 966 E benjamin.aggar@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

Practical Solutions for Built Environments Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

From: AU.Samplereceipt.Sydney@SGS.com [mailto:AU.Samplereceipt.Sydney@SGS.com] Sent: Saturday, 8 August 2020 12:02 PM To: Ian Watts - EIAustralia; Benjamin Aggar - EIAustralia; Laboratory Results - EIAustralia Subject: SGS Sample Receipt Advice (Ref: E24782 The Hills Bowling Club, Baulkham, Lab Ref: SE209734)

Dear Ian Watts,

Please be advised we have received samples for analysis as detailed in the attached documentation.

Covid-19 update: SGS Australia is open, with our Business Service Continuity Plans being put in place to ensure your project can be delivered as normal, please see the following links further details: 19 March 2020 Letter. 30 March 2020 Update.

Best regards, SGS Alexandria Sample Administration Team SGS Australia Pty Ltd

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	lan Watts	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E24782 The Hills Bowling Club, Baulkham	Samples Received	Thu 6/8/2020	
Order Number	E24782	Report Due	Fri 14/8/2020	
Samples	18	SGS Reference	SE209734	

- SUBMISSION DETAILS

This is to confirm that 18 samples were received on Thursday 6/8/2020. Results are expected to be ready by COB Friday 14/8/2020. Please quote SGS reference SE209734 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 7/8/2020@11:21pm Yes 14°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 16 Sol, 2 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

23 samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

SW 2015 Aust SW 2015 Aust

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E24782 The Hills Bowling Club, Baulkham

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1M_0.7-0.8	29	14	26	11	7	10	11	7
002	BH2M_0.1-0.2	29	14	26	11	7	10	11	7
003	BH2M_4.5-4.6	-	-	26	-	7	10	11	7
004	BH3_0.2-0.3	29	14	26	11	7	10	11	7
005	BH4_0.5-0.6	29	14	26	11	7	10	11	7
006	BH4_5.0-5.5	29	14	26	11	7	10	11	7
007	BH5_0.1-0.2	29	14	26	11	7	10	11	7
008	BH5_0.7-0.8	-	-	26	-	7	10	11	7
009	BH6_0.6-0.7	29	14	26	11	7	10	11	7
010	BH7_1.0-1.1	29	14	26	11	7	10	11	7
011	BH7_1.5-1.6	-	-	26	-	7	10	11	7
012	BH8_0.1-0.2	29	14	26	11	7	10	11	7
013	BH9_0.1-0.2	29	14	26	11	7	10	11	7
014	QD1	-	-	-	-	7	10	11	7
017	QTB1	-	-	-	-	-	-	11	-
018	QTS1	_	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH1M_0.7-0.8	2	1	1
002	BH2M_0.1-0.2	2	1	1
003	BH2M_4.5-4.6	-	1	1
004	BH3_0.2-0.3	2	1	1
005	BH4_0.5-0.6	2	1	1
006	BH4_5.0-5.5	-	1	1
007	BH5_0.1-0.2	2	1	1
008	BH5_0.7-0.8	-	1	1
009	BH6_0.6-0.7	2	1	1
010	BH7_1.0-1.1	2	1	1
011	BH7_1.5-1.6	-	1	1
012	BH8_0.1-0.2	2	1	1
013	BH9_0.1-0.2	2	1	1
014	QD1	-	1	1
017	QTB1	-	-	1

Project E24782 The Hills Bowling Club, Baulkham

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

8/08/2020

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E24782 The Hills Bowling Club, Baulkham

SUMMARY	OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
015	QR1	1	7	9	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . Please book this in

Regards,

Paul Harley Environment, Health & Safety Client Manager Phone: +61 (0)2 8594 0400 Direct: +61 (0)2 8594 0449 Mobile: +61 (0)4 0797 2867 (Please note my new working hours of Mon-Fri 6:00am-2:00pm)

-----Original Message-----

From: Benjamin Aggar - ElAustralia <<u>benjamin.aggar@eiaustralia.com.au</u>> Sent: Thursday, 20 August 2020 11:10 AM To: AU.Environmental.Sydney (Sydney) <<u>AU.Environmental.Sydney@sgs.com</u>>; AU.SampleReceipt.Sydney (Sydney) <<u>AU.SampleReceipt.Sydney@sgs.com</u>> Cc: Ian Watts - ElAustralia <<u>ian.watts@eiaustralia.com.au</u>>; Lance Chen - ElAustralia <<u>lance.chen@eiaustralia.com.au</u>>; Lan Ye - ElAustralia <<u>lan.ye@eiaustralia.com.au</u>> Subject: [EXTERNAL] RE: Report Job SE209734, your reference E24782 The Hills Bowling Club, Baulkham, order number E24782

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. *** _____

Hi SGS,

Please complete the following:

- TCLP for B(a)P in sample BH1M_0.7-0.8 and BH7_1.0-1.1 on standard TAT

- TCLP for lead in sample BH7_1.0-1.1 and BH8_0.1-0.2 on standard TAT
- Send a photo of the 8x2x2mm fibrous rope material

Kind regards,

Ben Aggar Environmental Engineer Project Coordinator

T (02) 9516 0722 M 0435 759 966 E <u>benjamin.aggar@eiaustralia.com.au</u>

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it.

Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

-----Original Message-----From: <u>AU.Environmental.Sydney@SGS.com</u> [mailto:AU.Environmental.Sydney@SGS.com] Sent: Friday, 14 August 2020 7:19 PM To: Benjamin Aggar - ElAustralia; Ian Watts - ElAustralia; Laboratory Results - ElAustralia Subject: Report Job SE209734, your reference E24782 The Hills Bowling Club, Baulkham, order number E24782

Dear valued customer,

Please find attached the report for SGS job SE209734, your reference E24782 The Hills Bowling Club, Baulkham, order number E24782.

-IMPORTANT INFORMATION ABOUT YOUR REPORT- To align with NEPM 1999 (2013), SGS Environmental has changed the way Silica Gel Clean-up of TRH extracts is reported. TPH Silica Gel has now become TRH – Silica. NEPM 1999(2013) seeks to clarify TRH and TPH in Schedule B3, 10.2.7.

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

Regards,

Jennifer Munar

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company. Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage caused by any virus transmitted by this email. All SGS

services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>https://www.sgs.com/en/terms-and-conditions</u>

- CLIENT DETAIL	S	LABORATORY DETA	AILS
Contact	lan Watts	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkham	Samples Received	Thu 20/8/2020
Order Number	E24782	Report Due	Thu 27/8/2020
Samples	18	SGS Reference	SE209734A

SUBMISSION DETAILS

This is to confirm that 18 samples were received on Thursday 20/8/2020. Results are expected to be ready by COB Thursday 27/8/2020. Please quote SGS reference SE209734A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 20/8/2020@11:10am Yes 14°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 3 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E24782 The Hills Bowling Club, Baulkham

 SUMMARY	OF ANALYSIS				
No.	Sample ID	Metals in TCLP Extract by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in TCLP	TCLP (Toxicity Characteristic Leaching	TCLP (Toxicity Characteristic Leaching
001	BH1M_0.7-0.8	-	4	-	6
010	BH7_1.0-1.1	1	4	-	6
012	BH8_0.1-0.2	1	-	6	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Site Hills Barling Clwh Bau Hills Barling Clwh Bau Hills Barling Clwh Bau Hills Barling Toplate Isometry: Envirolab Services 12 Ashley Street, CHATSWOOD NSW 2067 P: 02 9910 6200 Sampling Barling Sampling Ib Hills Ib Container Type Date Time NN VI J O5/66/bd V V			_			Sam	nple N	/atrix								Ana	lysis								Comments
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Site	15 1			Project No:												Ē	<u> </u>		-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	The Hills	Barl	ing Clu	rh,		1										6	ivity)								
$\frac{P: 02 9910 6200}{Sample} = \frac{P: 02 9910 6200}{D} = \frac{P: 02 9910 6200}{Container} = \frac{V_{U}}{Type} = \frac{V_{U}}{Date} = \frac{V_{U}}{Type} = \frac{V_{U}}{V_{U}} = $	Baullehow	H.	115		624782			etc.)	Я К	ş		1			Ę	ange	quct					1			
$\frac{P: 02 9910 6200}{Sample} = \frac{P: 02 9910 6200}{D} = \frac{P: 02 9910 6200}{Container} = \frac{V_{U}}{Type} = \frac{V_{U}}{Date} = \frac{V_{U}}{Type} = \frac{V_{U}}{V_{U}} = $	Laboratory:	Envirol	Iah Service		<u> </u>			aint,	(/PA	/PAF					catio	sch	Co								Lead
$\frac{P: 02 9910 6200}{Sample} = \frac{P: 02 9910 6200}{D} = \frac{P: 02 9910 6200}{Container} = \frac{V_{U}}{Type} = \frac{V_{U}}{Date} = \frac{V_{U}}{Type} = \frac{V_{U}}{V_{U}} = $		12 Ash	ley Street,	5				pro, F	TE>	ТЕХ	ТЕХ				ntifi	on e	rical	lite						AH	Nickel
QT J O5/08/20 X X X Nickel Dewatering Suite PH & EC TDS / Turbidity NTU T T T T	.423 ⁴ 7			W 2067				e. Fit	E E E	H/B.	H/B.				Que	(cat	elect	l S D						В/	нм≞
QT J O5/08/20 X X X Nickel Dewatering Suite PH & EC TDS / Turbidity NTU T T T T				S	mpling	α	1	3S (I.	E A	TR.	TR.		6	stos	stos	ы С Е С	l	terin	SAS					Η	
QT J O5/08/20 X X X Nickel Dewatering Suite PH & EC TDS / Turbidity NTU T T T T						ATE	님	THE	Å Å SCP	₹	₽W	Ω.	Ö,	sbe	sbe	Н/0	H/E	ewa	РОС	FAS				СГР	Lead
pH & EC TDS / Turbidity NTU	6-1					5	· · · ·	0	<u> </u>		$\overline{\mathbf{v}}$	ш			4	<u>a</u>	<u> </u>		S	<u>م</u>		-			
TDS / Turbidity NTU		\bigcirc		05/08	140		1				X														
											'														
Total Cyanide	· .																								
	· ·																								Cu, Pb, Hg, Ni, Zn)
BTEX PAH																									BTEX
Total Phenol		•																							Total Phenol
LABORATORY TURNAROUND						•																			
											ĺ														
Image: Additional and a standard Image: Additional and a standard Image: Additional and a standard	iii iii																								<u>/ </u>
24 Hours												,													24 Hours
48 Hours																									48 Hours
72 Hours								-																	72 Hours
																									Other
Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jar Investigator: I attest that these samples were collected in accordance]						tigato		l	l	0.000		l]]	1	
S= solvent washed, acid rinsed glass bottle with standard EI field sampling procedures.	S= solvent washed, aci	d rinsed gla		5 121			111403	igato	with :	standa	ard El	field s	ampli	ng pro	cedur	es.	JUDIUS	fice .	R	eport v	vith El	Waste	Class	ificatio	n Table
P= natural HDPE plastic bottle Sampler's Name (EI): Received by (Envirolab) Sampler's Comments:	VC= glass vial, Teflon S						Sampl	er's Na	me (El)	:			Recei	ved by	(Enviro	lab)			Sam	oler's (Comm	ents:			
	ZLB = Zip-Lock Bag						Prin	t R	on	K	19	2				ala							~	12	10
Suite 6 01 55 Miller Street Signature Signature			Si	iite 6.01	55 Miller Str	pat	Sign	' <u>\</u> ature		4	<u>v.</u> v_		Signa	ature		-			; I	, UUU		C		19-	er,
PYRMONT NSW 2009 Date The Pate Aggor the report							Date				····			ICAL	\sim	><			A	ŶĴ	or	-+	he	(report
$\Theta[a][stra][a] = \frac{11.33100722}{1.33100722} = \frac{1700720}{1000720} = \frac{1000720}{1000720} = \frac{1000720}{100070} = \frac{1000700}{100070} = \frac{100070}{100070} = \frac{100070}{100070} = \frac{100070}{100070} = \frac{100070}{1000} = $	ค่อเม่า	ralia	a					01					11	08	20	20	15:11	2	• -	VV		v	•		C I
Contamination : Remodule : Geosteconical lab@eiaustralia.com.au IMPORTANT: COC March 2018 FORMV4-SGS Please e-mail laboratory results to: lab@eiaustralia.com.au	Contamination Remode	tion i Gestechn	u j	-		iu						. 14	lah G			1									

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

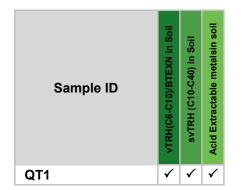
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Ben Aggar, Lance Chen

Sample Login Details	
Your reference	E24782, The Hills Bowling Club, Baulkham Hills
Envirolab Reference	248695
Date Sample Received	11/08/2020
Date Instructions Received	11/08/2020
Date Results Expected to be Reported	18/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	16.3
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Sheet o	of				Sarr	nple N	Matrix Analysis Com								Comments									
site: The Hills Ba	Jing Cl	ub, Baulk	lan Hills F	roject No: 24782			etc.)	NHs OS	Hs					чо	lange)	Iductivity)								HMA Arsenic Cadmium Chromium Copper
Laboratory:	SGS Au Unit 16 ALEXA		Street, 2015				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ [≜] /ТКН/ВТЕХ/РАНs	A /TRH/BTEX			Q	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ing Suite						M ^B / PAH	Lead Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample ID	Laboratory ID	y Container Type	Sam; Date	oling Time	WATER	SOIL	OTHERS	HM A /7 OCP/OF	HM Å /T	HM≜/T	втех	vocs	Asbestos	Asbesto	pH / CE	pH / EC	Dewatering	sPOCAS	PFAS	Phenols			TCLP HM	Cadmium Chromlum Lead Mercury
BHIM		S,PX2,UCX	2 14/8/2	10	\times				\times			X								X				Nickel Dewatering Suite
BHZMA	2	1			1				{			Ī						•		Í				pH & EC TDS / Turbidity NTU Hardness
B14411A	3											il												Total Cyanide Metals (Al, As, Cd, Cr,
GWQD I	4	V	V		V					X										<u> </u>				Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
GWQTSI	S	VC	Val.	1		\times					X													PAH Total Phenol
GWQTBI	6	VC	Colo prepa	er.		X					\times													LABORATORY TURNAROUND
GWQR 1	7	S,VCX2	14/8/20		\times					\times														Standard
																		Sydn						24 Hours
																5E	20	99	89					48 Hours
											·				1									72 Hours
																								Other
															I	1	1				í 1			
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HOPE plas	d rinsed gla		ss jar			Inves	tigato	r: I atte with				iples v sampli				ccorda	ance	R	eport	with El	Waste	e Class	sificatio	n Table
P= natural HDPE plastic bottle VC≃ glass vial, Teflon Septum ZLB = Zip-Lock Bag				Samp Prin		me (El)				Prin	ved by	<u> </u>	~ .				pler's			,				
						(~	<u>Ye</u>			5	en	X	Zh	•		Please filter the plastic bottle for				bottle-for			
<i>6</i> !			uite 6.01, 55 PYRMONT			Signature								Meuse sand GWQTI to Envirolab										
eiaus	trali	ລ	Ph: 951	6 0722		Date 14/8/20 Date 14/8/2023'20								29	Mea	ise s	and	Gin	VQTI	40	Envirolab			
			lab@eiaust		au			TÁNT nail lab			ilte to:	laha	Daia	ietro										
	COC March 2018 FORM v.4 - SGS					ried	30 0-0	an au	Jacor	yrest	JILS 10:	າວມແ	nal	pner	ud.UC	un.ar	л							

and a second second

second-data, parpage 1,565 Ref 5629-04 qui 15

Contact	Lan Ye	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkhan	Samples Received	Fri 14/8/2020
Order Number	E24782	Report Due	Fri 21/8/2020
Samples	7	SGS Reference	SE209989

_ SUBMISSION DETAILS

This is to confirm that 7 samples were received on Friday 14/8/2020. Results are expected to be ready by COB Friday 21/8/2020. Please quote SGS reference SE209989 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 14/8/2020 Yes 14°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 2 Soil, 5 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E24782 The Hills Bowling Club, Baulkhan

SUMMAR	Y OF ANALYSIS		1	1		1	
No.	Sample ID	Moisture Content	PAH (Polynuclear Aromatic Hydrocarbons) in Water	TRH (Total Recoverable Hydrocarbons) in Water	VOC's in Soil	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH1M	-	22	9	-	78	7
002	BH2M	-	22	9	-	78	7
003	BH4M	-	22	9	-	78	7
004	GWQD1	-	-	9	-	11	7
005	GWQTS1	1	-	-	11	-	-
006	GWQTB1	1	-	-	11	-	-
007	GWQR1	_	-	9	-	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS
001	BH1M	1	1	7
002	BH2M	1	1	7
003	BH4M	1	1	7
004	GWQD1	1	-	7
007	GWQR1	1	-	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E24782 The Hills Bowling Club, Baulkhan

	Sheet of	of Sample Matrix Analysis Comme						Comments																
	site: The Hills Baulin	18 Alab.	Baylicher	u dic	Project No:												ivity)							HM A Arsenic Cadmium
			·		E2478 z			int, etc.)	PAHs estos	SHAS					ation	exchange)	conduct		•					Chromium Copper Lead Mercury
	Laboratory:	12 Ash CHATS	lab Services nley Street, SWOOD NS\ 9910 6200					OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^Å /TRH/BTEX			S	Asbestos Quantification	cation	pH / EC (electrical conductivity)	Dewatering Suite	S				IM ^B / PAH	Nickel Zinc HM ^B Arsenic
	Sample	Laboratory		Sa	ampling	WATER		HERS		ΛÅΛ	1 <i>∆ N</i>	втех	vocs	Asbestos	sbestc	pH / CEC (I/EC	wate	sPOCAS	PFAS			TCLP HM	Cadmium Chromium Lead
5	ID		Туре	Date	Time		soll	DTI	Ξŏ	Í	Î	BT	×	Å:	As	Ъ Ч	4	ے ا	с, С	4	 			Mercury Nickel
$\overline{(})$	GWQTI	+	S,PXZ,VCXZ	14/8/2	<u>2</u>	$ \times$	-	<u> </u>			X			ļ						 	└──┼-			Dewatering Suite pH & EC
		\				ļ		<u> </u>		 	!			 			 				-			TDS / Turbidity NTU Hardness Tatal Curptide
				ļ		<u> </u>		<u> </u>					 										<u> </u>	Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
		<u> </u>	<u> </u>	ļ		_				 				<u> </u>		En	irolab	Service	s					TRH (F1, F2, F3, F4) BTEX
														ENVIR	DLAB	Chatsv	12 A vood N	shley S SW 206	t 7					PAH Total Phenol
														Job N	vo: 2	Ph	(02) 9	910 620	р					LABORATORY
														Date F	Receive	≩d: \-	7/02	120	20-					Standard
			T	[T							Time I Receiv	Receiv	ed: 19 19-1	5.50) .						24 Hours
														Temp:	: Cool g: Ice/ ty/fnia	inter onac)							48 Hours
			1											Secur	ty	C/Bro	ken/No	ne						72 Hours
			1		_									<u> </u>		[Other
		+	1			<u> </u>			 					<u> </u>					•		- -			
	Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plast	cid rinsed gla		ss jar	J		Inve	stigate	or: I atto with						collecte ocedur		liccord	ance	F	Report	with EI \	Waste Clas	l sificati	on Table
	VC= glass vial, Teflon ZLB = Zip-Lock Bag						Samp Prid		lame (El):					(Enviro		0			•	Comme			
	LEW EN STATES			<u></u>				- Lan	n/2	<u></u>				nt El		Syc	inis.	1	Plea	se t	-ilter	sindl pl	ostik	bottle for
		à			55 Miller St	•	Sigr	nature C	A				Sign	nature	line	訴	, ,		ine	ta 7	test.			·
		, trali	-		NT NSW 200 9516 0722	09	Date	°(7	181	20			Date	* 17	108	1202	2019	डे ही						
	Content ruters - Furne	LI dill	a		ustralia.com.	.au	•	POR	TANT	T:														
				COC March 20	18 FORM v.4 - SGS		Plea	ise e-	mail lat	boratc	ry res	ults to	: lab(@eia	iustra	ilia.co	om.a	u						

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

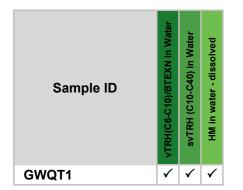
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lan Ye

Sample Login Details	
Your reference	E24782, Baulkham Hills
Envirolab Reference	249161
Date Sample Received	17/08/2020
Date Instructions Received	17/08/2020
Date Results Expected to be Reported	24/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix K – Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS			
Contact	lan Watts	Manager	Huong Crawford			
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental			
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015			
Telephone	61 2 95160722	Telephone	+61 2 8594 0400			
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499			
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com			
Project	E24782 The Hills Bowling Club, Baulkham	SGS Reference	SE209734 R0			
Order Number	E24782	Date Received	6/8/2020			
Samples	18	Date Reported	14/8/2020			

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #10: Asbestos found in approx 8x2x2mm fibrous rope material.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Bennet LO Senior Organic Chemist/Metals Chemist

kmln

Ly Kim HA Organic Section Head

Dong LIANG Metals/Inorganics Team Leader

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

Kamrul AHSAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

14/08/2020

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

SE209734 R0

VOC's in Soil [AN433] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			Birnin_otr oto	B112.11_0.1 0.2	B112111_4.0 4.0	2110_0.2 0.0	5114_0.0 0.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-	-	-	-
Chloromethane	mg/kg	1				-	
Vinyl chloride (Chloroethene)	mg/kg	0.1	_	_	_	-	
		1			-	-	
Bromomethane Chloroethane	mg/kg	1	-	-	-	-	-
	mg/kg						
Trichlorofluoromethane	mg/kg	1	-	-	-	-	-
Acetone (2-propanone)	mg/kg	10	-	-	-	-	-
lodomethane	mg/kg	5	-	-	-	-	-
1,1-dichloroethene	mg/kg	0.1	-	-	-	-	-
Acrylonitrile	mg/kg	0.1	-	-	-	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-	-	-	-
Allyl chloride	mg/kg	0.1	-	-	-	-	-
Carbon disulfide	mg/kg	0.5	-	-	-	-	-
trans-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-	-	-	-
1,1-dichloroethane	mg/kg	0.1	-	-	-	-	-
Vinyl acetate	mg/kg	10	-	-	-	-	-
MEK (2-butanone)	mg/kg	10	-	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	-
Bromochloromethane	mg/kg	0.1	-	-	-	-	-
Chloroform	mg/kg	0.1	-	-	-	-	-
2,2-dichloropropane	mg/kg	0.1	-	-	-	-	-
1,2-dichloroethane	mg/kg	0.1	-	-	-	-	-
1,1,1-trichloroethane	mg/kg	0.1	-	-	-	-	-
1,1-dichloropropene	mg/kg	0.1	-	-	-	-	-
Carbon tetrachloride	mg/kg	0.1	-	-	-	-	-
Dibromomethane	mg/kg	0.1	-	-	-	-	-
1,2-dichloropropane	mg/kg	0.1	_	-	-	-	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	_	_	_	-	-
2-nitropropane	mg/kg	10	-	-	-	-	-
Bromodichloromethane	mg/kg	0.1		-	-	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	-	-	-	-
cis-1,3-dichloropropene	mg/kg	0.1		-	-	-	-
trans-1,3-dichloropropene	mg/kg	0.1	-	-	-	-	-
1,1,2-trichloroethane	mg/kg	0.1	_	-	-	-	
1,3-dichloropropane	mg/kg	0.1		-	-	-	-
Chlorodibromomethane		0.1	_	-	-	-	_
2-hexanone (MBK)	mg/kg	5	-	-	-	-	-
	mg/kg						
1,2-dibromoethane (EDB)	mg/kg	0.1	-	-	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-	-	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	-
Chlorobenzene	mg/kg	0.1	-	-	-	-	-
Bromoform	mg/kg	0.1	-	-	-	-	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	-	-	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	-	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	-	-	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	-	-	-	-

ANALYTICAL RESULTS

SE209734 R0

VOC's in Soil [AN433] Tested: 10/8/2020 (continued)

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL - 5/8/2020	SOIL - 5/8/2020	SOIL - 5/8/2020	SOIL - 5/8/2020	SOIL - 5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-	-	-	-
Bromobenzene	mg/kg	0.1	-	-	-	-	-
n-propylbenzene	mg/kg	0.1	-	-	-	-	-
2-chlorotoluene	mg/kg	0.1	-	-	-	-	-
4-chlorotoluene	mg/kg	0.1	-	-	-	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	-	-	-	-
tert-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	-	-	-	-
sec-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
p-isopropyltoluene	mg/kg	0.1	-	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
n-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-	-	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	-	-	-	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	-	-	-	-
Total VOC*	mg/kg	24	-	-	-	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-	-	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	-

SE209734 R0

			BH4_5.0-5.5			BUC 0 C 0 7	
			БП4_0.0-0.0	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	5/8/2020 SE209734.006	5/8/2020 SE209734.007	5/8/2020 SE209734.008	5/8/2020 SE209734.009	5/8/2020 SE209734.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes		0.3	<0.3	<0.3	<0.3	<0.3	<0.1
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
	mg/kg	0.6	<0.0	<0.0	<0.0	<0.0	<0.8
Naphthalene	mg/kg						
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	-	-	-	-
Chloromethane	mg/kg	1	<1	-	-	-	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	-	-	-	-
Bromomethane	mg/kg	1	<1	-	-	-	-
Chloroethane	mg/kg	1	<1	-	-	-	-
Trichlorofluoromethane	mg/kg	1	<1	-	-	-	-
Acetone (2-propanone)	mg/kg	10	<10	-	-	-	-
Iodomethane	mg/kg	5	<5	-	-	-	-
1,1-dichloroethene	mg/kg	0.1	<0.1	-	-	-	-
Acrylonitrile	mg/kg	0.1	<0.1	-	-	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	-	-	-	-
Allyl chloride	mg/kg	0.1	<0.1	-	-	-	-
Carbon disulfide	mg/kg	0.5	<0.5	-	-	-	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	-	-	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	-	-	-	-
1,1-dichloroethane	mg/kg	0.1	<0.1	-	-	-	-
Vinyl acetate	mg/kg	10	<10	-	-	-	-
MEK (2-butanone)	mg/kg	10	<10	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	-	-	-	-
Bromochloromethane	mg/kg	0.1	<0.1	-	-	-	-
Chloroform	mg/kg	0.1	<0.1	-	-	-	-
2,2-dichloropropane	mg/kg	0.1	<0.1	-	-	-	-
1,2-dichloroethane	mg/kg	0.1	<0.1	-	-	-	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	-	-	-	-
1,1-dichloropropene	mg/kg	0.1	<0.1	-	-	-	-
Carbon tetrachloride	mg/kg	0.1	<0.1	-	-		_
Dibromomethane	mg/kg	0.1	<0.1	_		-	
1,2-dichloropropane		0.1	<0.1	-	-	-	_
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	-		-	
	mg/kg						
2-nitropropane	mg/kg	10	<10	-	-	-	-
Bromodichloromethane	mg/kg	0.1	<0.1	-	-	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	-	-	-	
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	-	-	-	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	-	-	-	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	-	-	-	-
1,3-dichloropropane	mg/kg	0.1	<0.1	-	-	-	-
Chlorodibromomethane	mg/kg	0.1	<0.1	-	-	-	-
2-hexanone (MBK)	mg/kg	5	<5	-	-	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	-	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	-	-	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	-	-	-	-
Chlorobenzene	mg/kg	0.1	<0.1	-	-	-	-
Bromoform	mg/kg	0.1	<0.1	-	-	-	-
cis-1,4-dichloro-2-butene	mg/kg	1	<1	-	-	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	-	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	-	-	-	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	-	-	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	-	-	-	-
				1	1	1	

SE209734 R0

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	-	-	-	-
Bromobenzene	mg/kg	0.1	<0.1	-	-	-	-
n-propylbenzene	mg/kg	0.1	<0.1	-	-	-	-
2-chlorotoluene	mg/kg	0.1	<0.1	-	-	-	-
4-chlorotoluene	mg/kg	0.1	<0.1	-	-	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	-	-	-	-
tert-butylbenzene	mg/kg	0.1	<0.1	-	-	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	-	-	-	-
sec-butylbenzene	mg/kg	0.1	<0.1	-	-	-	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	-	-	-	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	-	-	-	-
p-isopropyltoluene	mg/kg	0.1	<0.1	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	-	-	-	-
n-butylbenzene	mg/kg	0.1	<0.1	-	-	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	-	-	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	-	-	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	-	-	-	-
Total VOC*	mg/kg	24	<24	-	-	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	-	-	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	-	-	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	-	-	-	-

SE209734 R0

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1	QTB1
				-	-	0.011	0.011
			SOIL -	SOIL	SOIL	SOIL	SOIL -
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.011	SE209734.012	SE209734.013	SE209734.014	SE209734.017
Benzene Toluene	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene Total Xylenes	mg/kg mg/kg	0.1	<0.3	<0.3	<0.1	<0.1	<0.1
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.5
Naphthalene	mg/kg	0.0	<0.0	<0.0	<0.0	<0.0	<0.0
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	-	-	-	
Chloromethane	mg/kg	1	-	-	-	-	
Vinyl chloride (Chloroethene)	mg/kg	0.1	-		-	-	
Bromomethane		1	-	-	-	-	-
Chloroethane	mg/kg	1	-		-	-	
Trichlorofluoromethane	mg/kg mg/kg	1	-	-	-	-	-
		10	-	-	-	-	-
Acetone (2-propanone)	mg/kg	10 5	-	-	-	-	-
Iodomethane 1,1-dichloroethene	mg/kg	0.1	-	-	-	-	-
	mg/kg			-	-	-	-
Acrylonitrile	mg/kg	0.1	-				
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-	-	-	-
Allyl chloride	mg/kg	0.1	-	-	-	-	-
Carbon disulfide	mg/kg	0.5					-
trans-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-	-	-	-
1,1-dichloroethane	mg/kg	0.1	-	-	-	-	-
Vinyl acetate	mg/kg	10	-	-	-	-	-
MEK (2-butanone)	mg/kg	10	-	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	-	-	-	-
Bromochloromethane	mg/kg	0.1					
Chloroform	mg/kg		-	-	-	-	-
2,2-dichloropropane	mg/kg	0.1	-	-	-	-	-
1,2-dichloroethane	mg/kg	0.1	-	-	-	-	-
1,1,1-trichloroethane	mg/kg	0.1	-	-	-	-	-
1,1-dichloropropene	mg/kg	0.1	-	-	-	-	-
Carbon tetrachloride Dibromomethane	mg/kg	0.1	-	-	-	-	-
	mg/kg	0.1	-	-	-	-	-
1,2-dichloropropane	mg/kg	0.1	-	-	-	-	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	-	-	-	-
2-nitropropane Bromodichloromethane	mg/kg	10	-	-	-	-	-
	mg/kg	0.1	-	-	-	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	0.1	-	-	-	-	-
cis-1,3-dichloropropene	mg/kg	0.1	-	-	-	-	-
trans-1,3-dichloropropene 1,1,2-trichloroethane	mg/kg	0.1	-	-	-	-	-
1,1,2-trichloroetnane	mg/kg	0.1	-	-	-	-	-
Chlorodibromomethane	mg/kg	0.1	-	-	-	-	-
2-hexanone (MBK)	mg/kg mg/kg	5	-	-	-	-	-
1,2-dibromoethane (EDB)		0.1	-	-	-	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg mg/kg	0.1	-	-	-	-	-
1,1,1,2-tetrachloroethane		0.1	-	-	-	-	-
1,1,1,2-tetrachioroethane Chlorobenzene	mg/kg	0.1	-	-	-	-	-
Bromoform	mg/kg		-	-	-	-	
	mg/kg	0.1					-
cis-1,4-dichloro-2-butene	mg/kg	1	-	-	-	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	-	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-	-	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	-	-	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	-	-	-	-

SE209734 R0

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1	QTB1
PARAMETER	UOM	LOR	SOIL - 5/8/2020 SE209734.011	SOIL - 5/8/2020 SE209734.012	SOIL - 5/8/2020 SE209734.013	SOIL - 5/8/2020 SE209734.014	SOIL - 5/8/2020 SE209734.017
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-	-	-	-
Bromobenzene	mg/kg	0.1	-	-	-	-	-
n-propylbenzene	mg/kg	0.1	-	_	-	-	-
2-chlorotoluene	mg/kg	0.1	_	-	_	-	-
4-chlorotoluene	mg/kg	0.1	_	-	-	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	-	-	-	-
tert-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	-	-	-	-
sec-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
p-isopropyltoluene	mg/kg	0.1	-	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	-	-	-	-
n-butylbenzene	mg/kg	0.1	-	-	-	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-	-	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	-	-	-	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	-	-	-	-
Total VOC*	mg/kg	24	-	-	-	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-	-	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-	-	-	-

			QTS1
			SOIL -
PARAMETER	UOM	LOR	SE209734.018
Benzene	mg/kg	0.1	[99%]
Toluene	mg/kg	0.1	[106%]
Ethylbenzene	mg/kg	0.1	[107%]
m/p-xylene	mg/kg	0.2	[108%]
o-xylene	mg/kg	0.1	[110%]
Total Xylenes	mg/kg	0.3	-
Total BTEX	mg/kg	0.6	-
Naphthalene	mg/kg	0.1	-
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-
Chloromethane	mg/kg	1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-
Bromomethane	mg/kg	1	-
Chloroethane	mg/kg	1	-
Trichlorofluoromethane	mg/kg	1	-
Acetone (2-propanone)	mg/kg	10	-
lodomethane	mg/kg	5	-
1,1-dichloroethene	mg/kg	0.1	-
Acrylonitrile	mg/kg	0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-
Allyl chloride	mg/kg	0.1	-
Carbon disulfide	mg/kg	0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	_
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	_
1,1-dichloroethane	mg/kg	0.1	-
Vinyl acetate	mg/kg	10	-
MEK (2-butanone)	mg/kg	10	_
cis-1,2-dichloroethene	mg/kg	0.1	
Bromochloromethane	mg/kg	0.1	_
Chloroform	mg/kg	0.1	_
2.2-dichloropropane	mg/kg	0.1	
1,2-dichloroethane	mg/kg	0.1	
		0.1	-
1,1,1-trichloroptopene	mg/kg	0.1	-
	mg/kg		-
Carbon tetrachloride	mg/kg	0.1	-
Dibromomethane	mg/kg	0.1	-
1,2-dichloropropane	mg/kg	0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-
2-nitropropane	mg/kg	10	-
Bromodichloromethane	mg/kg	0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-
cis-1,3-dichloropropene	mg/kg	0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	-
1,1,2-trichloroethane	mg/kg	0.1	-
1,3-dichloropropane	mg/kg	0.1	-
Chlorodibromomethane	mg/kg	0.1	-
2-hexanone (MBK)	mg/kg	5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-
Chlorobenzene	mg/kg	0.1	-
Bromoform	mg/kg	0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	-
Styrene (Vinyl benzene)	mg/kg	0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-
1,2,3-trichloropropane	mg/kg	0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	-

			QTS1
			SOIL -
PARAMETER	UOM	LOR	5/8/2020 SE209734.018
Isopropylbenzene (Cumene)	mg/kg	0.1	-
Bromobenzene	mg/kg	0.1	-
n-propylbenzene	mg/kg	0.1	-
2-chlorotoluene	mg/kg	0.1	-
4-chlorotoluene	mg/kg	0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-
tert-butylbenzene	mg/kg	0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-
sec-butylbenzene	mg/kg	0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-
p-isopropyltoluene	mg/kg	0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-
n-butylbenzene	mg/kg	0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-
Hexachlorobutadiene	mg/kg	0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-
Total VOC*	mg/kg	24	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	5/8/2020 SE209734.011	5/8/2020 SE209734.012	5/8/2020 SE209734.013	5/8/2020 SE209734.014
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
111100-03	iiig/kg		~20		-	
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			5/8/2020	5/8/2020	5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	76	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	100	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				5/8/2020	5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.011	SE209734.012	SE209734.013	SE209734.014
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

SE209734 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	5/8/2020 SE209734.001	5/8/2020 SE209734.002	5/8/2020 SE209734.003	5/8/2020 SE209734.004	5/8/2020 SE209734.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.9	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	2.9	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	1.7	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	12	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	11	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	5.8	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	5.2	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	6.5	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	3.0	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	5.6	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	4.4	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	3.9	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>8.1</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	8.1	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>8.1</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	8.1	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>8.1</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	8.1	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	63	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	63	<0.8	<0.8	<0.8	<0.8

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
					0.01	0.01	0.01
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	5/8/2020	- 5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	1.5
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.7
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	3.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	2.9
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	1.2
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	1.2
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	1.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.6
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	1.0
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.7
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.3</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	1.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>1.4</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	1.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.4</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	1.4
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	1.1	15
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	1.1	15

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/8/2020 (continued)

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	5/8/2020 SE209734.011	5/8/2020 SE209734.012	5/8/2020 SE209734.013
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.2	0.2
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	1.5	1.0
Anthracene	mg/kg	0.1	<0.1	0.6	0.5
Fluoranthene	mg/kg	0.1	<0.1	1.6	2.3
Pyrene	mg/kg	0.1	<0.1	1.9	2.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.6	0.8
Chrysene	mg/kg	0.1	<0.1	0.8	1.0
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.5	0.8
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.4	0.5
Benzo(a)pyrene	mg/kg	0.1	<0.1	0.5	0.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.2	0.4
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.4	0.6
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.7</td><td>1.0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.7	1.0
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.8</td><td>1.1</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.8	1.1
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.7</td><td>1.1</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.7	1.1
Total PAH (18)	mg/kg	0.8	<0.8	9.0	11
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	9.0	11

SE209734 R0

OC Pesticides in Soil [AN420] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	0.1	-	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	1.1	-	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	1.3	-	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	0.8	-	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	0.2	-	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	0.9	-	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Mirex	mg/kg	0.1	0.2	<0.1	-	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	4	-	<1	<1

OC Pesticides in Soil [AN420] Tested: 10/8/2020 (continued)

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	-	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	-	<1	<1

OC Pesticides in Soil [AN420] Tested: 10/8/2020 (continued)

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1
			SOIL - 5/8/2020	SOIL - 5/8/2020	SOIL - 5/8/2020	SOIL - 5/8/2020
PARAMETER	UOM	LOR	SE209734.011	SE209734.012	SE209734.013	SE209734.014
Hexachlorobenzene (HCB)	mg/kg	0.1	-	<0.1	<0.1	-
Alpha BHC	mg/kg	0.1	-	<0.1	<0.1	-
Lindane	mg/kg	0.1	-	<0.1	<0.1	-
Heptachlor	mg/kg	0.1	-	<0.1	<0.1	-
Aldrin	mg/kg	0.1	-	<0.1	<0.1	-
Beta BHC	mg/kg	0.1	-	<0.1	<0.1	-
Delta BHC	mg/kg	0.1	-	<0.1	<0.1	-
Heptachlor epoxide	mg/kg	0.1	-	<0.1	<0.1	-
o,p'-DDE	mg/kg	0.1	-	<0.1	<0.1	-
Alpha Endosulfan	mg/kg	0.2	-	<0.2	<0.2	-
Gamma Chlordane	mg/kg	0.1	-	<0.1	<0.1	-
Alpha Chlordane	mg/kg	0.1	-	<0.1	<0.1	-
trans-Nonachlor	mg/kg	0.1	-	<0.1	<0.1	-
p,p'-DDE	mg/kg	0.1	-	<0.1	<0.1	-
Dieldrin	mg/kg	0.2	-	<0.2	<0.2	-
Endrin	mg/kg	0.2	-	<0.2	<0.2	-
o,p'-DDD	mg/kg	0.1	-	<0.1	<0.1	-
o,p'-DDT	mg/kg	0.1	-	<0.1	<0.1	-
Beta Endosulfan	mg/kg	0.2	-	<0.2	<0.2	-
p,p'-DDD	mg/kg	0.1	-	<0.1	<0.1	-
p,p'-DDT	mg/kg	0.1	-	<0.1	<0.1	-
Endosulfan sulphate	mg/kg	0.1	-	<0.1	<0.1	-
Endrin Aldehyde	mg/kg	0.1	-	<0.1	<0.1	-
Methoxychlor	mg/kg	0.1	-	<0.1	<0.1	-
Endrin Ketone	mg/kg	0.1	-	<0.1	<0.1	-
Isodrin	mg/kg	0.1	-	<0.1	<0.1	-
Mirex	mg/kg	0.1	-	<0.1	<0.1	-
Total CLP OC Pesticides	mg/kg	1	-	<1	<1	-

OP Pesticides in Soil [AN420] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH3_0.2-0.3	BH4_0.5-0.6	BH4_5.0-5.5
PARAMETER	UOM	LOR	SOIL - 5/8/2020 SE209734.001	SOIL - 5/8/2020 SE209734.002	SOIL - 5/8/2020 SE209734.004	SOIL - 5/8/2020 SE209734.005	SOIL - 5/8/2020 SE209734.006
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH5_0.1-0.2	BH6_0.6-0.7	BH7_1.0-1.1	BH8_0.1-0.2	BH9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			5/8/2020	5/8/2020	5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.007	SE209734.009	SE209734.010	SE209734.012	SE209734.013
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

SE209734 R0

PCBs in Soil [AN420] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	<1	<1

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	<1	<1

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1
PARAMETER	UOM	LOR	SOIL - 5/8/2020 SE209734.011	SOIL - 5/8/2020 SE209734.012	SOIL - 5/8/2020 SE209734.013	SOIL - 5/8/2020 SE209734.014
Arochlor 1016	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1221	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1232	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1242	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1248	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1254	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1260	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1262	mg/kg	0.2	-	<0.2	<0.2	-
Arochlor 1268	mg/kg	0.2	-	<0.2	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	-	<1	<1	-

SE209734 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 11/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	5/8/2020 SE209734.001	5/8/2020 SE209734.002	5/8/2020 SE209734.003	5/8/2020 SE209734.004	5/8/2020 SE209734.005
PARAMETER	UOW	LOR	SE209734.001	SE2097 34.002	SE209734.003	SE209734.004	SE209734.005
Arsenic, As	mg/kg	1	8	9	1	11	1
Cadmium, Cd	mg/kg	0.3	<0.3	0.5	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	8.3	6.2	2.4	15	4.8
Copper, Cu	mg/kg	0.5	21	10	12	14	30
Lead, Pb	mg/kg	1	42	20	12	23	10
Nickel, Ni	mg/kg	0.5	4.6	4.0	1.4	19	36
Zinc, Zn	mg/kg	2	26	43	8.5	43	17

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	5/8/2020 SE209734.006	5/8/2020 SE209734.007	5/8/2020 SE209734.008	5/8/2020 SE209734.009	5/8/2020 SE209734.010
Arsenic, As	mg/kg	1	7	5	9	7	9
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	6.0	8.6	4.9	13	8.5
Copper, Cu	mg/kg	0.5	39	20	17	17	54
Lead, Pb	mg/kg	1	25	14	16	24	220
Nickel, Ni	mg/kg	0.5	23	3.2	<0.5	8.2	6.7
Zinc, Zn	mg/kg	2	150	39	5.8	33	230

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
			- 5/8/2020	- 5/8/2020	- 5/8/2020	- 5/8/2020
PARAMETER	UOM	LOR	SE209734.011	SE209734.012	SE209734.013	SE209734.014
Arsenic, As	mg/kg	1	7	35	9	3
Cadmium, Cd	mg/kg	0.3	<0.3	0.5	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	10	10	6.3
Copper, Cu	mg/kg	0.5	14	30	18	4.7
Lead, Pb	mg/kg	1	23	130	27	9
Nickel, Ni	mg/kg	0.5	1.2	4.7	5.3	3.0
Zinc, Zn	mg/kg	2	7.0	160	36	14

Mercury in Soil [AN312] Tested: 11/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
Mercury	mg/kg	0.05	<0.05	1.9	<0.05	1.0	<0.05

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
Mercury	mg/kg	0.05	<0.05	0.68	<0.05	0.09	0.13

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
			5/8/2020	5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.011	SE209734.012	SE209734.013	SE209734.014
Mercury	mg/kg	0.05	<0.05	0.99	2.2	0.20

Moisture Content [AN002] Tested: 10/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH2M_4.5-4.6	BH3_0.2-0.3	BH4_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			5/8/2020			5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.003	SE209734.004	SE209734.005
% Moisture	%w/w	1	18.2	11.2	8.4	14.2	7.4

			BH4_5.0-5.5	BH5_0.1-0.2	BH5_0.7-0.8	BH6_0.6-0.7	BH7_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				5/8/2020	5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.006	SE209734.007	SE209734.008	SE209734.009	SE209734.010
% Moisture	%w/w	1	7.5	16.0	13.8	25.3	15.3

			BH7_1.5-1.6	BH8_0.1-0.2	BH9_0.1-0.2	QD1	QTB1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			5/8/2020			5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.011	SE209734.012	SE209734.013	SE209734.014	SE209734.017
% Moisture	%w/w	1	23.7	18.3	18.4	14.5	<1.0

Fibre Identification in soil [AN602] Tested: 12/8/2020

			BH1M_0.7-0.8	BH2M_0.1-0.2	BH3_0.2-0.3	BH4_0.5-0.6	BH5_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
						5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.001	SE209734.002	SE209734.004	SE209734.005	SE209734.007
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH6_0.6-0.7	BH7_1.0-1.1	BH8_0.1-0.2	BH9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
						-
				5/8/2020	5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734.009	SE209734.010	SE209734.012	SE209734.013
Asbestos Detected	No unit	-	No	Yes	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01

SE209734 R0

VOCs in Water [AN433] Tested: 10/8/2020

			QR1
			SOIL
			- 5/8/2020
PARAMETER	UOM	LOR	SE209734.015
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 10/8/2020

			QR1
			SOIL
PARAMETER	UOM	LOR	SE209734.015
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE209734 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 10/8/2020

			QR1
			SOIL -
PARAMETER	UOM	LOR	5/8/2020 SE209734.015
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

SE209734 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 10/8/2020

			QR1
			SOIL
			-
PARAMETER	UOM	LOR	5/8/2020 SE209734.015
Arsenic, As	μg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	μg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 10/8/2020

			QR1
			SOIL
			- 5/8/2020
PARAMETER	UOM	LOR	SE209734.015
Mercury	mg/L	0.0001	<0.0001

— METHOD ————	METHODOLOGY SUMMARY
_ METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover
**	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	lan Watts	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E24782 The Hills Bowling Club, Baulkham	SGS Reference	SE209734 R0	
Order Number	E24782	Date Received	06 Aug 2020	
Samples	9	Date Reported	14 Aug 2020	

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #10: Asbestos found in approx 8x2x2mm fibrous rope material.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Loi

Bennet LO Senior Organic Chemist/Metals Chemis

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

Agam.

Kamrul AHSAN Senior Chemist

km/n/

Ly Kim HA Organic Section Head

ANALYTICAL REPORT

Fibre Identifica	tion in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE209734.001	BH1M_0.7-0.8	Soil	81g Clay, Sand, Soil, Rocks	05 Aug 2020	No Asbestos Found	<0.01
SE209734.002	BH2M_0.1-0.2	Soil	225g Sand, Soil, Rocks	05 Aug 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE209734.004	BH3_0.2-0.3	Soil	88g Clay, Sand, Soil, Rocks	05 Aug 2020	No Asbestos Found	<0.01
SE209734.005	BH4_0.5-0.6	Soil	80g Clay, Rocks	05 Aug 2020	No Asbestos Found	<0.01
SE209734.007	BH5_0.1-0.2	Soil	134g Clay, Sand, Soil, Rocks	05 Aug 2020	No Asbestos Found	<0.01
SE209734.009	BH6_0.6-0.7	Soil	109g Clay, Soil, Rocks	05 Aug 2020	No Asbestos Found	<0.01
SE209734.010	BH7_1.0-1.1	Soil	87g Clay, Sand, Soil, Rocks	05 Aug 2020	Chrysotile Asbestos Found Organic Fibres Detected	<0.01
SE209734.012	BH8_0.1-0.2	Soil	90g Clay, Sand, Soil, Rocks	05 Aug 2020	No Asbestos Found	<0.01
SE209734.013	BH9_0.1-0.2	Soil	110g Clay, Sand, Soil, Rocks	05 Aug 2020	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed Chrysotile White Asbestos INR --Listed. Not Required Crocidolite Blue Asbestos -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	lan Watts	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkham	SGS Reference	SE209734A R0
Order Number	E24782	Date Received	20/8/2020
Samples	18	Date Reported	27/8/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet LO Senior Organic Chemist/Metals Chemist

kinter

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

27/08/2020

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC [AN006] Tested: 25/8/2020

			BH1M_0.7-0.8	BH7_1.0-1.1
PARAMETER	UOM	LOR	SOIL - 5/8/2020 SE209734A.001	SOIL - 5/8/2020 SE209734A.010
pH 1:20	pH Units	-	6.8	6.6
pH 1:20 plus HCL	pH Units	-	1.7	1.8
Extraction Solution Used	No unit	-	1	1
Mass of Sample Used*	g	-	25	25
Volume of ExtractionSolution Used*	mL	-	500	500
pH TCLP after 18 hours	pH Units	-	4.7	5.0

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract [AN420] Tested: 21/8/2020

			BH1M_0.7-0.8	BH7_1.0-1.1
			SOIL	SOIL
			5/8/2020	5/8/2020
PARAMETER	UOM	LOR	SE209734A.001	SE209734A.010
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1

TCLP (Toxicity Characteristic Leaching Procedure) for Metals [AN006] Tested: 25/8/2020

			BH8_0.1-0.2 SOIL - 5/8/2020
PARAMETER	UOM	LOR	SE209734A.012
pH 1:20	pH Units	-	8.8
pH 1:20 plus HCL	pH Units	-	1.9
Extraction Solution Used	No unit	-	1
Mass of Sample Used*	g	-	13
Volume of ExtractionSolution Used*	mL	-	250
pH TCLP after 18 hours	pH Units	-	4.7

Metals in TCLP Extract by ICPOES [AN320] Tested: 27/8/2020

		BH7_1.0-1.1	BH8_0.1-0.2
		SOIL	SOIL
		- 5/8/2020	- 5/8/2020
PARAMETER		SE209734A.010	SE209734A.012
Lead, Pb	mg/L 0.02	0.10	<0.02

METHOD	METHODOLOGY SUMMARY
AN006	Contaminants of interest in a waste material are leached out of the waste with a selected leaching solution under controlled conditions. The ratio of sample to extraction fluid is 100g to 2L (1 to 20 by mass). The concentration of each contaminant of interest is determined in the leachate by appropriate methods after separation from the sample by filtering. Base on USEPA 1311.
AN006	Extraction Fluid #1: This fluid is made by combining 128.6mL of dilute sodium hydroxide solution and 11.5mL glacial acetic acid with water and diluting to a volume of 2 litres. The pH of this fluid should be 4.93 ± 0.05.
AN006	Extraction Fluid #2: This fluid is made by diluting 5.7mL glacial acetic acid with water to a volume of 1 litre. The pH of this fluid should be 2.88 ± 0.05.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

FOOTNOTES

- NATA accreditation does not cover the performance of this service. ** Indicative data, theoretical holding time exceeded. *** Indicative data, theoretical holding time exceeded and NATA accreditation does not cover the
- performance of this service.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received. UOM LOR ¢↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 248695

Client Details	
Client	El Australia
Attention	Ben Aggar, Lance Chen
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24782, The Hills Bowling Club, Baulkham Hills
Number of Samples	1 Soil
Date samples received	11/08/2020
Date completed instructions received	11/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	18/08/2020					
Date of Issue	17/08/2020					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		248695-1
Your Reference	UNITS	QT1
Date Sampled		05/08/2020
Type of sample		Soil
Date extracted	-	12/08/2020
Date analysed	-	12/08/2020
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	94

svTRH (C10-C40) in Soil		
Our Reference		248695-1
Your Reference	UNITS	QT1
Date Sampled		05/08/2020
Type of sample		Soil
Date extracted	-	12/08/2020
Date analysed	-	13/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	89

Acid Extractable metals in soil		
Our Reference		248695-1
Your Reference	UNITS	QT1
Date Sampled		05/08/2020
Type of sample		Soil
Date prepared	-	12/08/2020
Date analysed	-	12/08/2020
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	8
Copper	mg/kg	6
Lead	mg/kg	9
Mercury	mg/kg	0.2
Nickel	mg/kg	4
Zinc	mg/kg	17

Moisture		
Our Reference		248695-1
Your Reference	UNITS	QT1
Date Sampled		05/08/2020
Type of sample		Soil
Date prepared	-	12/08/2020
Date analysed	-	13/08/2020
Moisture	%	13

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	Duplicate Spike Recove				covery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			12/08/2020	[NT]		[NT]	[NT]	12/08/2020	
Date analysed	-			12/08/2020	[NT]		[NT]	[NT]	12/08/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	93	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	93	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	87	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	89	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	93	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	97	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	97	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	100	[NT]		[NT]	[NT]	102	

QUALITY CO		Du	plicate		Spike Re	covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			12/08/2020	[NT]		[NT]	[NT]	12/08/2020	
Date analysed	-			13/08/2020	[NT]		[NT]	[NT]	13/08/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	94	[NT]	[NT]	[NT]	[NT]	97	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Duplicate Spike Reco				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			12/08/2020	[NT]		[NT]	[NT]	12/08/2020	
Date analysed	-			12/08/2020	[NT]		[NT]	[NT]	12/08/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	93	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	89	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	90	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	94	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	89	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	78	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	90	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	90	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkhan	SGS Reference	SE209989 R0
Order Number	E24782	Date Received	14/8/2020
Samples	7	Date Reported	21/8/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

km/m/

Ly Kim HA Organic Section Head

ion 1

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 13

VOC's in Soil [AN433] Tested: 17/8/2020

			GWQTS1	GWQTB1
			SOIL	SOIL
			- 14/8/2020	- 14/8/2020
PARAMETER	UOM	LOR	SE209989.005	SE209989.006
Benzene	mg/kg	0.1	[100%]	<0.1
Toluene	mg/kg	0.1	[99%]	<0.1
Ethylbenzene	mg/kg	0.1	[97%]	<0.1
m/p-xylene	mg/kg	0.2	[97%]	<0.2
o-xylene	mg/kg	0.1	[97%]	<0.1
Naphthalene	mg/kg	0.1	-	<0.1
Total Xylenes	mg/kg	0.3	-	<0.3
Total BTEX	mg/kg	0.6	-	<0.6

Moisture Content [AN002] Tested: 17/8/2020

			GWQTB1
			SOIL
			- 14/8/2020
PARAMETER	UOM	LOR	SE209989.006
% Moisture	%w/w	1	<1.0

SE209989 R0

VOCs in Water [AN433] Tested: 18/8/2020

			BH1M	BH2M	BH4M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
							-
PARAMETER	UOM	LOR	14/8/2020 SE209989.001	14/8/2020 SE209989.002	14/8/2020 SE209989.003	14/8/2020 SE209989.004	14/8/2020 SE209989.007
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	1.7	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	6	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	2.2	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	8.0	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	10	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	0.8	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	-	-
Chloromethane	µg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	µg/L	10	<10	<10	<10	-	-
Chloroethane	µg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	µg/L	1	<1	<1	<1	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	<10	-	-
Iodomethane	µg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
Allyl chloride	µg/L	2	<2	<2	<2	-	-
Carbon disulfide	µg/L	2	<2	<2	<2	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	µg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	µg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	µg/L	0.5	<0.5	<0.5	7.2	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-nitropropane	µg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	µg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5		
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5		-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-

SE209989 R0

VOCs in Water [AN433] Tested: 18/8/2020 (continued)

			BH1M	BH2M	BH4M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
				-	-	-	-
			14/8/2020	14/8/2020	14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003	SE209989.004	SE209989.007
Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	1.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	3.4	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	μg/L	10	<10	<10	25	-	-

SE209989 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 18/8/2020

			BH1M	BH2M	BH4M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			14/8/2020	14/8/2020	14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003	SE209989.004	SE209989.007
TRH C6-C9	µg/L	40	<40	<40	70	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	77	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	66	<50	<50

SE209989 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403]

Tes	ted:	17	/8/2	020	

			BH1M	BH2M	BH4M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
							-
			14/8/2020	14/8/2020	14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003	SE209989.004	SE209989.007
TRH C10-C14	µg/L	50	<50	260	<50	86	<50
TRH C15-C28	µg/L	200	<200	280	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	290	<60	94	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	290	<60	94	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	<320	540	<320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 17/8/2020

			BH1M	BH2M	BH4M
			WATER	WATER	WATER
			14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003
Naphthalene	µg/L	0.1	<0.1	<0.1	0.3
2-methylnaphthalene	µg/L	0.1	<0.1	0.1	0.6
1-methylnaphthalene	µg/L	0.1	<0.1	0.1	0.8
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	0.1
Phenanthrene	µg/L	0.1	<0.1	0.4	0.2
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	1	2

Total Phenolics in Water [AN289] Tested: 18/8/2020

			BH1M	BH2M	BH4M
			WATER	WATER	WATER
			14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01

SE209989 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 14/8/2020

			BH1M	BH2M	BH4M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			14/8/2020	14/8/2020	14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003	SE209989.004	SE209989.007
Arsenic, As	µg/L	1	<1	6	4	5	<1
Cadmium, Cd	µg/L	0.1	<0.1	0.3	<0.1	0.2	<0.1
Chromium, Cr	μg/L	1	<1	27	4	14	<1
Copper, Cu	µg/L	1	5	96	1	62	1
Lead, Pb	μg/L	1	<1	37	2	23	<1
Nickel, Ni	μg/L	1	7	24	3	19	<1
Zinc, Zn	μg/L	5	69	170	28	120	<5

SE209989 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 17/8/2020

			BH1M	BH2M	BH4M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
							-
			14/8/2020	14/8/2020	14/8/2020	14/8/2020	14/8/2020
PARAMETER	UOM	LOR	SE209989.001	SE209989.002	SE209989.003	SE209989.004	SE209989.007
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

* NATA accreditation does not cover the performance of this service. **

Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received. UOM LOR ¢↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 249161

Client Details	
Client	El Australia
Attention	Lan Ye
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24782, Baulkham Hills
Number of Samples	1 Water
Date samples received	17/08/2020
Date completed instructions received	17/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	24/08/2020				
Date of Issue	24/08/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		249161-1
Your Reference	UNITS	GWQT1
Date Sampled		14/08/2020
Type of sample		Water
Date extracted	-	18/08/2020
Date analysed	-	18/08/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	120
Surrogate toluene-d8	%	95
Surrogate 4-BFB	%	84

svTRH (C10-C40) in Water		
Our Reference		249161-1
Your Reference	UNITS	GWQT1
Date Sampled		14/08/2020
Type of sample		Water
Date extracted	-	21/08/2020
Date analysed	-	24/08/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	99

HM in water - dissolved		
Our Reference		249161-1
Your Reference	UNITS	GWQT1
Date Sampled		14/08/2020
Type of sample		Water
Date prepared	-	18/08/2020
Date analysed	-	18/08/2020
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	6
Zinc-Dissolved	μg/L	13

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH((C6-C10)/E	BTEXN in Water			Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			18/08/2020	[NT]		[NT]	[NT]	18/08/2020	
Date analysed	-			18/08/2020	[NT]		[NT]	[NT]	18/08/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	106	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	106	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	114	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	107	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	108	[NT]		[NT]	[NT]	96	
Surrogate toluene-d8	%		Org-023	94	[NT]		[NT]	[NT]	95	
Surrogate 4-BFB	%		Org-023	83	[NT]		[NT]	[NT]	110	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			21/08/2020	[NT]		[NT]	[NT]	21/08/2020		
Date analysed	-			24/08/2020	[NT]		[NT]	[NT]	24/08/2020		
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	109		
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	98		
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92		
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	109		
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	98		
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92		
Surrogate o-Terphenyl	%		Org-020	73	[NT]		[NT]	[NT]	76		

QUALITY CC	NTROL: HN	1 in water	- dissolved		Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			18/08/2020	[NT]		[NT]	[NT]	18/08/2020	
Date analysed	-			18/08/2020	[NT]		[NT]	[NT]	18/08/2020	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	94	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	102	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	

Result Definitions	
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Appendix L – QA/QC Assessment

QUALITY CONTROL PROGRAM

L1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Contaminant Delineation Report, El collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table L-1**.

Table L-1	Sampling [Data Quality	Indicators

QA/QC Measures	Data Quality Indicators				
Precision – A quantitative measure of the variability (or reproducibility) of data	 Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered. 				
Accuracy – A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy would be assessed through the analysis of: Method blanks, which are analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; Laboratory control samples; and Calibration of instruments against known standards. 				
Representativeness – The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following: Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 				
Completeness – A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all COC documentation are presented, reviewed and found to be properly completed. It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment. 				

QA/QC Measures	Data Quality Indicators
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition the data will be collected by experienced samplers and NATA-accredited laboratory methodologies will be employed in all laboratory testing programs.

L1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

C_R = Concentration obtained for the blind replicate or split duplicate sample.

L2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil samples collected during the investigations were as follows:

- Blind field duplicate;
- Inter-laboratory duplicate;
- Trip spike;
- Trip blank; and
- Rinsate;

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table L-2**.

L2.1 SOIL INVESTIGATION & SOIL VALIDATION

L2.1.1 Blind Field Duplicate

A blind field duplicate (BFD) was collected, including:

• Sample QD1 was collected from primary sample BH1M_0.7-0.8.

The preparation of the BFD samples involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate samples were then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil samples were analysed for TRHs, BTEX and selected heavy metals, and calculated RPD values were found to be generally within the Data Acceptance Criteria (**Appendix L**, **Table QC5**), with the exception of various metals due to fill sample heterogeneity.

L2.1.2 Inter-Laboratory Duplicate

• Sample QT1 was collected from primary sample BH1M_0.7-0.8.

The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX and selected heavy metals. The calculated RPD values were found to be within the Data Acceptance Criteria (75% RPD, **Appendix L, Table QC5**), with the exception of various metals due to fill sample heterogeneity.

L2.1.3 Trip Blank

One trip blank (TB) sample QTB1 was prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

L2.1.4 Trip Spike

One trip spike (QTS1) sample was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

L2.1.5 Rinsate

One rinsate blank (QR1) sample was submitted to the primary laboratory for selected priority metals, TRH and BTEX analysis. The results for which were reported below laboratory LOR.

L2.2 GROUNDWATER INVESTIGATION

L2.2.1 Intra-Laboratory Duplicate

One BFD sample was collected. The BFD sample was analysed for TRHs, BTEX and heavy metals. The RPD values calculated were found to be within the Data Acceptance Criteria, with the exception of F2 and Chromium due to the low concentration detected. Overall data quality was considered to be acceptable, in accordance with the laboratory DQOs presented in **Appendix L, Table QC5**.

L2.2.1 Inter-Laboratory Duplicate

One ILD sample was collected. The preparation of a groundwater ILD sample was identical to the BFD sample as described above and also analysed for TRHs, BTEX and heavy metals. The RPD values calculated for the ILD samples were found to be within the Data Acceptance Criteria, with the exception of some heavy metals due to the low concentration detected. Despite the discrepancies, overall data quality was considered to be acceptable, in accordance with the laboratory DQOs presented in **Appendix L, Table QC5**.

L2.2.2 Trip Blank

One trip blank (TB) samples (GWQTB1), prepared by the primary laboratory, were analysed for BTEX and VOCs by the primary laboratory during groundwater testing. TB result was reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

L2.2.3 Trip Spike

One TS sample (GWQTS1) was submitted to the primary laboratory for BTEX analysis, the results for which were all reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

L2.2.4 Rinsate Blanks

One field rinsate blank (GWQR1) was submitted to the primary laboratory for TRHs, BTEX and heavy metals analysis, the results for which were reported below laboratory LOR.

L2.3 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to any observable signs of contamination based on visual and odour assessment and observable characteristics, in regards to soil. Furthermore, samples were placed immediately into laboratory supplied containers to reduce the loss of volatiles. Results of sampling indicated that the samples collected were representative of the conditions present at the time of sampling. El conclude that the samples collected are representative of the soils present at the respective sampling locations.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the data gap closure investigations to be appropriate and the results to be acceptable.

L3 LABORATORY QA/QC

L3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix M**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix M**.

L3.2 SAMPLE HOLDING TIMES

All sample holding times were generally within standard environmental protocols as tabulated in **Appendix M, Tables QC1 and QC2**.

L3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in **Appendix M**, **Tables QC3** and **QC4**.

L3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

L3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Duplicate Samples (LDS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC, with the exception of Phenanthrene in sample SE209734.010 due to sample heterogeneity.

L3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC, with the exception of 1 metal.

L3.7 MATRIX SPIKES

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC, with the exception for 1 OCP due to the presence of significant concentration of analyte and 2 heavy metals due to matrix interference.

L3.8 SURROGATE

Recovery results for all surrogate samples conformed to the DAC, with the exception for 4 PAHs. However, at least 2 of 3 surrogates are within acceptance criteria.

L3.9 CONCLUDING REMARK

Based on the laboratory QA/QC results EI considers that although a small number of discrepancies were identified, which in most cases could be attributed to the sample heterogeneity of the submitted samples, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

Table L-2 Summary of QA/QC results for Investigation samples

					RH	•		BT	ΈX							Heavy	Metals			I
Sample identification	Sampled Date	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	m/p-xylene	o-xylene	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Du	plicate						•	•			•									
BH1M_0.7-0.8	3/8/2020	Fill Material	<25	<25	100	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	8	<0.3	8.3	21	42	<0.05	4.6	26
QD1	3/8/2020	Replicate of BH1M_0.7-0.8	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	3	<0.3	6.3	4.7	9	0.2	3	14
	RPL	0	0.00	0.00	13.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90.91	0.00	27.40	126.85	129.41	133.33	42.11	60.00
Inter-laboratory Du	plicate																			
BH1M_0.7-0.8	3/8/2020	Fill Material	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.2	<0.1	8	<0.3	8.3	21	42	<0.05	4.6	26
QT1	3/8/2020	Replicate of BH1M_0.7-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<2	<1	<4	<0.4	8	6	9	0.2	4	17
RPD		D	0.00	NA	NA	NA	NA	NA	NA	NA	NA	NA	80.00	NA	3.68	111.11	129.41	133.33	13.95	41.86
Intra-laboratory Du	plicate																			
BH2M	14/8/2020	Groundwater	<50	290	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	6	0.3	27	96	37	24	170	210
GWQD1	14/8/2020	Replicate of BH2M	<50	94	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	5	0.2	14	62	23	19	120	160
	RPL	D	0.00	102.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.18	40.00	63.41	43.04	46.67	23.26	34.48	27.03
Inter-laboratory Du	plicate																			
BH2M	14/8/2020	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	6	0.3	27	96	37	24	170	210
GWQT1	14/8/2020	Replicate of BH2M	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.5	<1	<0.1	<1	1	<1	<0.05	6	13
	RPL	ס	NA	NA	NA	NA	NA	NA	NA	NA	0.00	0.00	153.85	114.29	189.09	195.88	192.00	199.38	186.36	176.68
Trip Blank												-			-					
QTB1	-	Soil	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-	-	-
GWQTB1	-	Water	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-	-	-
Trip Spike												-			-					
QTS1	-	Soil	-	-	-	-	[99%]	[106%]	[107%]	N.A.	[108%]	[110%]	-	-	-	-	-	-	-	-
GWQTS1	-	Water	-	-	-	-	[100%]	[99%]	[97%]	N.A.	[97%]	[97%]	-	-	-	-	-	-	-	
Rinsate	1			1	1		•	•			•					1	1			
GWQR1	14/8/2020	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	<1	1	<1	<0.1	<1	<5
QR1	3/8/2020	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

52.17 82.35 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in μ g/L.

* - to obtain F1 subtract the sum of BTEX concentrations from the C₆-C₁₀ fraction

** - to obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction

Appendix M– Laboratory QA/AC Policies and DQOS

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil						
Parameter	Container	Preservation	Maximum Holding Time			
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months			
Mercury	Glass with Teflon Lid	Nil	28 days			
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days			
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days			
Phenols	Glass with Teflon Lid	4°C ¹	14 days			
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days			
Asbestos	Sealed Plastic Bag	Nil	N/A			

Table QC2 - Containers, Preservation Requirements and Holding Times - Water						
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time			
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months			
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months			
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days			
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days			

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil									
Parameter	Unit	PQL	Method Reference						
Metals in Soil									
Arsenic - As ¹	Arsenic - As ¹ mg / kg 1 USEPA 200.7								
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7						
Chromium - Cr ¹	mg / kg	1	USEPA 200.7						
Copper - Cu ¹	mg / kg	1	USEPA 200.7						
Lead - Pb ¹	mg / kg	1	USEPA 200.7						
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A						
Nickel - Ni ¹	mg / kg	1	USEPA 200.7						
Zinc - Zn ¹	mg / kg	1	USEPA 200.7						
Tota	al Petroleum Hyd	rocarbons (TP	Hs) in Soil						
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260						
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000						
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000						
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000						
	BTE	X in Soil							
Benzene	mg / kg	1	USEPA 8260						
Toluene	mg / kg	1	USEPA 8260						
Ethylbenzene	mg / kg	1	USEPA 8260						
m & p Xylene	mg / kg	2	USEPA 8260						
o- Xylene	mg / kg	1	USEPA 8260						
	Other Organic C	contaminants i	n Soil						
PAHs	mg / kg	0.05-0.2	USEPA 8270						
CHCs	mg / kg	1	USEPA 8260						
VOCs	mg / kg	1	USEPA 8260						
SVOCs	mg / kg	1	USEPA 8260						
OCPs	mg / kg	0.1	USEPA 8140, 8080						
OPPs	mg / kg	0.1	USEPA 8140, 8080						
PCBs	mg / kg	0.1	USEPA 8080						
Phenolics	mg / kg	5	APHA 5530						
	As	bestos							
Asbestos	Asbestos mg / kg Presence / AS4964-2004 Absence								

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

			Method	Parameter	Unit	PQL	Method			
	Heavy Metals			Chlorinated Hydrocarbons (CHCs)						
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B			
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B			
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B			
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B			
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B			
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B			
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B			
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D			
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B			
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npounds	s (VOCs)			
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B			
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B			
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B			
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B			
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B			
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B			
Total Petrol		drocarb		Phenolic Compounds						
C_6 - C_9 fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041			
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041			
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041			
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041			
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041			
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041			
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041			
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041			
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous l	Paramet	ers			
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN			
Polyciclic Aro	matic H	lydrocar	bons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C			
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510			
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+			
OrganoCh	lorine F	Pesticide	es (OCPs)	OrganoPhos	phate Pe	esticides	s (OPPs)			
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141			
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μ g/L	0.01	USEPA 8141			
DDT Dialdrin	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141			
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081	Dimethoate Fenitrothion	μg/L	0.01	USEPA 8141			
Endosulian	μg/L μg/L	0.001	USEPA 8081 USEPA 8081	Malathion	μg/L μg/L	0.01	USEPA 8141 USEPA 8141			
Heptachlor	μg/L μg/L	0.001	USEPA 8081	Parathion	μg/∟ μg/L	0.01	USEPA 8141			
Lindane	μg/L μg/L	0.001	USEPA 8081	Temephos	μg/∟ μg/L	0.01	USEPA 8141			
Toxaphene	μg/L μg/L	0.001	USEPA 8081	Polychlorin						
	~°9' -			Individual PCBs	μg/L	0.01	USEPA 8081			

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range		
	Field QC			
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 		
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
Laboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%		
	Laboratory QC			
_aboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample resul > 10 LOR		
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)		
Matrix Spikes .aboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).		
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)		
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)		
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	lan Watts	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkham	SGS Reference	SE209734 R0
Order Number	E24782	Date Received	06 Aug 2020
Samples	18	Date Reported	14 Aug 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	4 items
Duplicate	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	1 item
Matrix Spike	OC Pesticides in Soil	1 item
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items

Samples clearly labelled	Yes	(Complete documentation received		Yes	
Sample container provider	SGS		Sample cooling method		Ice Bricks	
Samples received in correct c	ontainers Yes		Sample counts by matrix		16 Sol, 2 Water	
Date documentation received	7/8/20	20@11:21pm	Type of documentation received		COC	
Samples received in good ord	er Yes		Samples received without headspace	е	Yes	
Sample temperature upon rec	eipt 14°C	5	Sufficient sample for analysis		Yes	
Turnaround time requested	Standa	ard				
SGS Australia Pty Ltd	Environment, Health and Safety	Unit 16 33 Maddo	ox St Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

Method: ME-(AU)-[ENV]AN312

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206555	05 Aug 2020	06 Aug 2020	05 Aug 2021	12 Aug 2020	05 Aug 2021	13 Aug 2020
Mercury (dissolved) in Water	r						Method: ME-(AU)-[ENV	AN311(Perth)/AN31

rcury (dissolved) in Water

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE209734.015	LB206307	05 Aug 2020	06 Aug 2020	02 Sep 2020	10 Aug 2020	02 Sep 2020	10 Aug 2020

Mercury in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206466	05 Aug 2020	06 Aug 2020	02 Sep 2020	11 Aug 2020	02 Sep 2020	13 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206573	05 Aug 2020	06 Aug 2020	02 Sep 2020	12 Aug 2020	02 Sep 2020	13 Aug 2020
QD1	SE209734.014	LB206573	05 Aug 2020	06 Aug 2020	02 Sep 2020	12 Aug 2020	02 Sep 2020	13 Aug 2020

Moisture Content

Moisture Content							Method:	/IE-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
QD1	SE209734.014	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020
QTB1	SE209734.017	LB206365	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	15 Aug 2020	13 Aug 2020

OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020

Method: ME-(AU)-[ENV]AN420

Mothod: ME (ALD JENN/JANI420

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

OD Destileides in Oall

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH7_1.5-1.6	SE209734.011	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
QD1	SE209734.014	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020

OP Pesticides in Soli							Method: 1	VIE-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
QD1	SE209734.014	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
QD1	SE209734.014	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020

PCBs in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020
QD1	SE209734.014	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	14 Aug 2020

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sampled Analysis Due Sample Name Sample No. QC Ref Received Extraction Due Extracted Analysed BH1M 0.7-0.8 SE209734.001 LB206465 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 05 Aug 2020 BH2M_0.1-0.2 SE209734.002 I B206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 BH2M_4.5-4.6 SE209734.003 LB206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 BH3 0.2-0.3 SE209734.004 LB206465 01 Feb 2021 01 Feb 2021 13 Aug 2020 05 Aug 2020 06 Aug 2020 11 Aug 2020

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 Sampled Received Sample Name Sample No. QC Ref Extraction Due Analysis Due Analysed Extracted BH4 0.5-0.6 SE209734.005 I B206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 BH4_5.0-5.5 SE209734.006 LB206465 01 Feb 2021 01 Feb 2021 13 Aug 2020 05 Aug 2020 06 Aug 2020 11 Aug 2020 BH5 0.1-0.2 SE209734.007 LB206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 05 Aug 2020 06 Aug 2020 13 Aug 2020 BH5_0.7-0.8 SE209734.008 LB206465 01 Feb 2021 01 Feb 2021 11 Aug 2020 05 Aug 2020 06 Aug 2020 13 Aug 2020 BH6 0.6-0.7 SE209734.009 LB206465 01 Feb 2021 11 Aug 2020 01 Feb 2021 BH7_1.0-1.1 SE209734.010 LB206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 BH7_1.5-1.6 SE209734.011 LB206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 01 Feb 2021 11 Aug 2020 13 Aug 2020 BH8 0.1-0.2 SE209734.012 LB206465 05 Aug 2020 06 Aug 2020 01 Feb 2021 11 Aug 2020 01 Feb 2021 13 Aug 2020 BH9_0.1-0.2 SE209734.013 LB206572 05 Aug 2020 06 Aug 2020 01 Feb 2021 12 Aug 2020 01 Feb 2021 13 Aug 2020 QD1 01 Feb 2021 SE209734.014 LB206572 05 Aug 2020 06 Aug 2020 01 Feb 2021 12 Aug 2020 13 Aug 2020 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE209734.015	LB206353	05 Aug 2020	06 Aug 2020	01 Feb 2021	10 Aug 2020	01 Feb 2021	11 Aug 2020

TRH (Total Recoverable Hydrocarbons) in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QD1	SE209734.014	LB206362	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
TRH (Total Recoverable	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE209734.015	LB206302	05 Aug 2020	06 Aug 2020	12 Aug 2020	10 Aug 2020	19 Sep 2020	12 Aug 2020

VOC's in Soil							Method: I	/IE-(AU)-[ENV]AN4:
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QD1	SE209734.014	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QTB1	SE209734.017	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QTS1	SE209734.018	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
VOCs in Water							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE209734.015	LB206387	05 Aug 2020	06 Aug 2020	12 Aug 2020	10 Aug 2020	19 Sep 2020	11 Aug 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN								ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734.001	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH2M_0.1-0.2	SE209734.002	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH2M_4.5-4.6	SE209734.003	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH3_0.2-0.3	SE209734.004	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH4_0.5-0.6	SE209734.005	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH4_5.0-5.5	SE209734.006	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH5_0.1-0.2	SE209734.007	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH5_0.7-0.8	SE209734.008	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH6_0.6-0.7	SE209734.009	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH7_1.0-1.1	SE209734.010	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH7_1.5-1.6	SE209734.011	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH8_0.1-0.2	SE209734.012	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
BH9_0.1-0.2	SE209734.013	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QD1	SE209734.014	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QTB1	SE209734.017	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
QTS1	SE209734.018	LB206360	05 Aug 2020	06 Aug 2020	19 Aug 2020	10 Aug 2020	19 Sep 2020	13 Aug 2020
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[EN]							/IE-(AU)-[ENV]AN4	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE209734.015	LB206387	05 Aug 2020	06 Aug 2020	12 Aug 2020	10 Aug 2020	19 Sep 2020	11 Aug 2020

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil				Method: M	E-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	108
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	108
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	114
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	106
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	103
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	107
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	107
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	105
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	102
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	102
P Pesticides in Soil				Method: M	E-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	70
	 BH2M_0.1-0.2	SE209734.002	%	60 - 130%	73
	 BH3_0.2-0.3	SE209734.004	%	60 - 130%	73
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	76
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	78
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	76
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	73
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	71
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	77
	BH9_0.1-0.2	SE209734.012	%	60 - 130%	77
14-p-terphenyl (Surrogate)		SE209734.001	%	60 - 130%	87
na-p-terphenyr (Sunogate)	BH1M_0.7-0.8 BH2M 0.1-0.2	SE209734.001	%	60 - 130%	107
			%	60 - 130%	
	BH3_0.2-0.3	SE209734.004			99
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	84
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	86
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	97
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	84
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	86
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	78
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	92
AH (Polynuclear Aromatic Hydrocarbons) in Soil					E-(AU)-[ENV]
arameter	Sample Name	Sample Number	Units	Criteria	Recover
2-fluorobiphenyl (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	70 - 130%	70 †
	BH2M_0.1-0.2	SE209734.002	%	70 - 130%	73
	BH2M_4.5-4.6	SE209734.003	%	70 - 130%	73
	BH3_0.2-0.3	SE209734.004	%	70 - 130%	73
	BH4_0.5-0.6	SE209734.005	%	70 - 130%	76
	BH4_5.0-5.5	SE209734.006	%	70 - 130%	78
	BH5_0.1-0.2	SE209734.007	%	70 - 130%	76
	BH5_0.7-0.8	SE209734.008	%	70 - 130%	71
	BH6_0.6-0.7	SE209734.009	%	70 - 130%	73
	BH7_1.0-1.1	SE209734.010	%	70 - 130%	71
	BH7_1.5-1.6	SE209734.011	%	70 - 130%	72
	BH8_0.1-0.2	SE209734.012	%	70 - 130%	77
	BH9_0.1-0.2	SE209734.013	%	70 - 130%	77
14-p-terphenyl (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	70 - 130%	87
	BH2M_0.1-0.2	SE209734.002	%	70 - 130%	107
	BH2M_4.5-4.6	SE209734.003	%	70 - 130%	91
	BH3_0.2-0.3	SE209734.004	%	70 - 130%	99
	BH4_0.5-0.6	SE209734.005	%	70 - 130%	84
	BH4_5.0-5.5	SE209734.006	%	70 - 130%	86
	BH5 0.1-0.2	SE209734.007	%	70 - 130%	97
	BH5_0.7-0.8	SE209734.008	%	70 - 130%	83
	BH6_0.6-0.7	SE209734.009	%	70 - 130%	84
			,,	70 400%	

BH7_1.0-1.1

BH7_1.5-1.6

BH8 0.1-0.2

BH9_0.1-0.2

SE209734.010

SE209734.011

SE209734.012

SE209734.013

%

%

%

%

70 - 130%

70 - 130%

70 - 130%

70 - 130%

86

95

78

92

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)					E-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
d5-nitrobenzene (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	70 - 130%	75
	BH2M_0.1-0.2	SE209734.002	%	70 - 130%	72
	BH2M_4.5-4.6	SE209734.003	%	70 - 130%	77
	BH3 0.2-0.3	SE209734.004	%	70 - 130%	77
	BH4_0.5-0.6	SE209734.005	%	70 - 130%	69 ①
	BH4_5.0-5.5	SE209734.006	%	70 - 130%	70 ①
	BH5_0.1-0.2	SE209734.007	%	70 - 130%	77
	BH5_0.7-0.8	SE209734.008	%	70 - 130%	68 ①
	BH6_0.6-0.7	SE209734.009	%	70 - 130%	82
	BH7_1.0-1.1	SE209734.010	%	70 - 130%	72
	BH7_1.5-1.6	SE209734.011	%	70 - 130%	72
	BH8_0.1-0.2	SE209734.012	%	70 - 130%	72
	BH9_0.1-0.2	SE209734.013	%	70 - 130%	78
Bs in Soil				Method: ME	-(AU)-[ENV]
	O-mula Nama	O - multa Nitrashara	11		
rameter	Sample Name	Sample Number	Units	Criteria	Recover
etrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	108
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	108
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	114
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	106
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	103
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	107
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	107
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	105
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	102
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	102
C's in Soil				Method: ME	-(AU)-[ENV]
rameter	Sample Name	Sample Number	Units	Criteria	Recover
omofluorobenzene (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	88
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	88
	BH2M_4.5-4.6	SE209734.003	%	60 - 130%	87
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	93
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	86
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	90
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	90
	BH5_0.7-0.8	SE209734.008	%	60 - 130%	92
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	79
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	84
	BH7_1.5-1.6	SE209734.011	%	60 - 130%	93
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	86
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	84
	QD1	SE209734.014	%	60 - 130%	87
	QTB1	SE209734.017	%	60 - 130%	92
	QTS1	SE209734.018	%	60 - 130%	82
-1,2-dichloroethane (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	84
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	90
	BH2M_4.5-4.6	SE209734.003	%	60 - 130%	85
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	91
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	84
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	94
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	86
	BH5_0.7-0.8	SE209734.008	%	60 - 130%	83
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	78
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	89
		SE209734.010			
			%	60 - 130%	87
	BH7_1.5-1.6				0.4
		SE209734.012	%	60 - 130%	81
	BH7_1.5-1.6		%	60 - 130% 60 - 130%	81
	BH7_1.5-1.6 BH8_0.1-0.2 BH9_0.1-0.2	SE209734.012 SE209734.013	%	60 - 130%	82
	BH7_1.5-1.6 BH8_0.1-0.2 BH9_0.1-0.2 QD1	SE209734.012 SE209734.013 SE209734.014	%	60 - 130% 60 - 130%	82 79
	BH7_1.5-1.6 BH8_0.1-0.2 BH9_0.1-0.2 QD1 QTB1	SE209734.012 SE209734.013 SE209734.014 SE209734.017	% % %	60 - 130% 60 - 130% 60 - 130%	82 79 94
3-toluene (Surrogate)	BH7_1.5-1.6 BH8_0.1-0.2 BH9_0.1-0.2 QD1	SE209734.012 SE209734.013 SE209734.014	%	60 - 130% 60 - 130%	82 79

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	77
	BH2M_4.5-4.6	SE209734.003	%	60 - 130%	82
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	78
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	83
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	84
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	75
	BH5_0.7-0.8	SE209734.008	%	60 - 130%	83
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	73
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	85
	BH7_1.5-1.6	SE209734.011	%	60 - 130%	81
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	81
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	75
	QD1	SE209734.014	%	60 - 130%	75
	QTB1	SE209734.017	%	60 - 130%	85
	QTS1	SE209734.018	%	60 - 130%	78

VOCs in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE209734.015	%	40 - 130%	100
d4-1,2-dichloroethane (Surrogate)	QR1	SE209734.015	%	40 - 130%	102
d8-toluene (Surrogate)	QR1	SE209734.015	%	40 - 130%	98

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydrocarbons in Soil				Method: ME-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	88
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	88
	BH2M_4.5-4.6	SE209734.003	%	60 - 130%	87
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	93
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	86
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	90
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	90
	BH5_0.7-0.8	SE209734.008	%	60 - 130%	92
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	79
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	84
	BH7_1.5-1.6	SE209734.011	%	60 - 130%	93
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	86
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	84
	QD1	SE209734.014	%	60 - 130%	87
d4-1,2-dichloroethane (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	84
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	90
	BH2M_4.5-4.6	SE209734.003	%	60 - 130%	85
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	91
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	84
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	94
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	86
	BH5_0.7-0.8	SE209734.008	%	60 - 130%	83
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	78
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	89
	BH7_1.5-1.6	SE209734.011	%	60 - 130%	87
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	81
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	82
	QD1	SE209734.014	%	60 - 130%	79
d8-toluene (Surrogate)	BH1M_0.7-0.8	SE209734.001	%	60 - 130%	79
	BH2M_0.1-0.2	SE209734.002	%	60 - 130%	77
	BH2M_4.5-4.6	SE209734.003	%	60 - 130%	82
	BH3_0.2-0.3	SE209734.004	%	60 - 130%	78
	BH4_0.5-0.6	SE209734.005	%	60 - 130%	83
	BH4_5.0-5.5	SE209734.006	%	60 - 130%	84
	BH5_0.1-0.2	SE209734.007	%	60 - 130%	75
	BH5_0.7-0.8	SE209734.008	%	60 - 130%	83
	BH6_0.6-0.7	SE209734.009	%	60 - 130%	73
	BH7_1.0-1.1	SE209734.010	%	60 - 130%	85

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH7_1.5-1.6	SE209734.011	%	60 - 130%	81
	BH8_0.1-0.2	SE209734.012	%	60 - 130%	81
	BH9_0.1-0.2	SE209734.013	%	60 - 130%	75
	QD1	SE209734.014	%	60 - 130%	75
Volatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE209734.015	%	40 - 130%	100
d4-1,2-dichloroethane (Surrogate)	QR1	SE209734.015	%	60 - 130%	102
d8-toluene (Surrogate)	QR1	SE209734.015	%	40 - 130%	98

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB206307.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB206466.001	Mercury	mg/kg	0.05	<0.05
LB206573.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			Metho	od: ME-(AU)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result
LB206362.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surroga	tes Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95

DP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result
LB206362.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	74
	d14-p-terphenyl (Surrogate)	%	-	103
AH (Polynuclear Aromatic Hydrocarbons) in Soi	I		Meth	od: ME-(AU)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result
B206362.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

Anthracene

<0.1

mg/kg

0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Number Parameter Units LOR Result LB206362.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 < 0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 78 2-fluorobiphenyl (Surrogate) % 74 d14-p-terphenyl (Surrogate) % 103 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Parameter Result Units LOR LB206362 001 Arochlor 1016 mg/kg 0.2 <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 95 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB206465.001 Arsenic, As mg/kg <1 1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.5 <0.5 <0.5 Copper, Cu 0.5 mg/kg Nickel, Ni mg/kg 0.5 <0.5 Lead, Pb mg/kg 1 <1 <2.0 Zinc, Zn 2 mg/kg LB206572.001 Arsenic, As <1 mg/kg 1 Cadmium, Cd mg/kg 0.3 < 0.3 Chromium, Cr 0.5 <0.5 mg/kg 0.5 <0.5 Copper, Cu mg/kg Nickel Ni mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 2 <2.0 Zinc, Zn mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Result Sample Number Parameter Units LB206353.001 Arsenic, As µg/L <1 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu <1 µg/L 1 Lead, Pb µg/L 1 <1 Nickel, Ni µg/L <1 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Units LOR Result Param LB206362.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 45 <45 mg/kg TRH C29-C36 mg/kg 45 <45 TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable	e Hydrocarbons) in Water				Method: ME-(AU)-[ENV]AN403
Sample Number	,,	Parameter	Units	LOR	Result
LB206302.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	µg/L	200	<200
		TRH C37-C40	µg/L	200	<200
VOC's in Soil					Method: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB206360.001	Eumisente			0.1	<0.1
LB200300.001	Fumigants	2,2-dichloropropane	mg/kg		
		1,2-dichloropropane	mg/kg	0.1	<0.1
		cis-1,3-dichloropropene	mg/kg	0.1	<0.1
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
		Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		Iodomethane	mg/kg	5	<5
		1,1-dichloroethene	mg/kg	0.1	<0.1
		Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5
				0.3	<0.1
		Allyl chloride	mg/kg		
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane	mg/kg	0.1	<0.1
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane	mg/kg	0.1	<0.1
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		cis-1,4-dichloro-2-butene	mg/kg	1	<1
				0.1	<0.1
		1,1,2,2-tetrachloroethane	mg/kg		
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene		0.1	<0.1
	-		mg/kg		
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
		Styrene (Vinyl benzene)	mg/kg	0.1	<0.1
		Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1
		n-propylbenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

OC's in Soil (continue	d)			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
_B206360.001	Monocyclic Aromatic	1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
	Hydrocarbons	sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	92
		d8-toluene (Surrogate)	%	-	82
		Bromofluorobenzene (Surrogate)	%	-	94
	Totals	Total BTEX	mg/kg	0.6	<0.6
		Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
		Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8
	Trihalomethanes	Chloroform	mg/kg	0.1	<0.1
		Bromodichloromethane	mg/kg	0.1	<0.1
		Chlorodibromomethane	mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	<0.1
OCs in Water				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B206387.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	99
	-	d8-toluene (Surrogate)	%	_	94

Volatile Petroleum Hydrocarbons in Soil

Voldalio I Ga	olouin nyulouarbons in con			Moun	
Sample Nu	ımber	Parameter	Units	LOR	Result
LB206360.00		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1.2-dichloroethane (Surrogate)	%	-	92

%

Bromofluorobenzene (Surrogate)

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hy	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB206387.001		TRH C6-C9	µg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	94
		Bromofluorobenzene (Surrogate)	%	-	95

95

Method: ME-(ALI)-JENV/JAN433

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water				Metho	d: ME-(AU)-[ENVJAN311(P	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209719.004	LB206307.014	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	198

Mercury in Soil

Mercury in Soil						Meth	od: ME-(AU)-[ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209734.003	LB206466.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE209734.012	LB206466.024	Mercury	mg/kg	0.05	0.99	1.3	34	24
SE209734.014	LB206573.006	Mercury	mg/kg	0.05	0.20	0.15	59	29
Moisture Content						Meth	od: ME-(AU)-[ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209734.010	LB206365.011	% Moisture	%w/w	1	15.3	14.4	37	6

OC Pesticides in Soil

C Pesticides in S	Soll						Metho	od: ME-(AU)-	(ENVJAN4
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
209734.013	LB206362.021		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0.0008509035	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0.0007322894	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0.0011197936	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0.000406796	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0.00089801	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0.003863919	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0.009634439	200	0
			Dieldrin	mg/kg	0.2	<0.2	0.0104497652	200	0
			Endrin	mg/kg	0.2	<0.2	0.0044798038	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0.003292702	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0.0063093103	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0.0138691126	200	0
			Isodrin	mg/kg	0.1	<0.1	0.0006231565	200	0
			Mirex	mg/kg	0.1	<0.1	0.0271911496	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0.0362470776	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15722466	30	2

	SO	In	es		Pes	P	0
ø	30		60	IUI	- 62		- U

01 1 03101003 11 0						Mour	iou. mic-(/10)-j	Tricebase
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209734.010	LB206362.014	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	0.2	<0.2	148	3
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in S	continued)						Meth	od: ME-(AU)-	
			D	11	100	Oniminal			
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD %
SE209734.010	LB206362.014	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
PAH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209734.010	LB206362.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
02200704.010	20200002.014		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
						<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1				
			Acenaphthylene	mg/kg	0.1	0.3	0.2	72	27
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	179	0
			Phenanthrene	mg/kg	0.1	1.5	1.0	38	44
			Anthracene	mg/kg	0.1	0.7	0.5	48	33
			Fluoranthene	mg/kg	0.1	3.1	2.5	34	20
			Pyrene	mg/kg	0.1	2.9	2.3	34	24
			Benzo(a)anthracene	mg/kg	0.1	1.2	0.9	40	22
			Chrysene	mg/kg	0.1	1.2	1.0	39	14
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.1	1.0	40	8
			Benzo(k)fluoranthene	mg/kg	0.1	0.6	0.6	46	6
			Benzo(a)pyrene	mg/kg	0.1	1.0	0.9	41	9
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	0.5	50	2
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	191	0
			Benzo(ghi)perylene	mg/kg	0.1	0.7	0.7	44	2
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>1.3</td><td>1.2</td><td>26</td><td>9</td></lor=0<>	mg/kg	0.2	1.3	1.2	26	9
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>1.4</td><td>1.2</td><td>32</td><td>8</td></lor=lor<>	mg/kg	0.3	1.4	1.2	32	8
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>1.4</td><td>1.3</td><td>25</td><td>9</td></lor=lor>	mg/kg	0.2	1.4	1.3	25	9
			Total PAH (18)	mg/kg	0.8	15	12	36	19
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
PCBs in Soil							Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209734.013	LB206362.021		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
02200101010	2020002.021		Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg		<0.2		200	0
						<0.Z		200	0
					0.2	-0.0	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg mg/kg	0.2 0.2	<0.2	0	200 200	0
			Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 <0.2	0 0 0	200 200 200	0 0 0
			Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2	0 0 0 0	200 200 200 200	0 0 0
			Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 <0.2	0 0 0	200 200 200	0 0 0 0
		Surrogates	Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2	0 0 0 0	200 200 200 200	0 0 0
Total Recoverable	Elements in Soil/Wa		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 1	<0.2 <0.2 <0.2 <1	0 0 0 0 0 0.15722466	200 200 200 200 200 200	0 0 0 0 0 2
			Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 -	<0.2 <0.2 <0.2 <1 0	0 0 0 0 0.15722466 Method: ME-	200 200 200 200 200 30 (AU)-[ENV]A	0 0 0 0 2 N040/AN3
Original	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	0.2 0.2 0.2 1 -	<0.2 <0.2 <0.2 <1 0 Original	0 0 0 0.15722466 Method: ME- Duplicate	200 200 200 200 30 (AU)-[ENV]A Criteria %	0 0 0 0 2 N040/AN3 RPD %
Original			Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) s by ICPOES Parameter Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.2 0.2 0.2 1 - LOR 1	<0.2 <0.2 <1 0 Original 1	0 0 0 0 0.15722466 Method: ME- Duplicate 1	200 200 200 200 30 (AU)-[ENV]A Criteria % 111	0 0 0 0 2 N040/AN3 RPD % 30
Original	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3	<0.2 <0.2 <1 0 Original 1 <0.3	0 0 0 0.15722466 Method: ME- Duplicate 1 <0.3	200 200 200 200 30 (AU)-[ENV]A Criteria % 111 200	0 0 0 2 N040/AN3 RPD % 30 0
Original	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5	<0.2 <0.2 <1 0 Original 1 <0.3 2.4	0 0 0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50	0 0 0 2 NO40/AN3 RPD % 30 0 13
Original	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12	0 0 0 0.0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7 14	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34	0 0 0 2 N040/AN3 RPD % 30 0 13 9
Original	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12 1.4	0 0 0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7 14 1.7	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62	0 0 0 2 N040/AN3 RPD % 30 0 13 9 17
	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12	0 0 0 0.0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7 14	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34	0 0 0 2 N040/AN3 RPD % 30 0 13 9
Original	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12 1.4	0 0 0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7 14 1.7	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62	0 0 0 2 N040/AN3 RPD % 30 0 13 9 17
Original SE209734.003	Duplicate		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5 0.5 1	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12 1.4 12	0 0 0 0.0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7 14 1.7 12	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38	0 0 0 2 N040/AN: RPD % 30 0 13 9 17 2
Original	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5 0.5 1 2	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12 1.4 12 8.5	0 0 0 0.15722466 Method: ME- Duplicate 1 <0.3 2.7 14 1.7 12 11	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51	0 0 0 2 N040/AN: RPD % 30 0 13 9 17 2 23
Original SE209734.003	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - LOR 1 0.3 0.5 0.5 0.5 1 2 1	<0.2 <0.2 <1 0 0 0 0 0 0 0 1 1 <0.3 2.4 12 1.4 12 8.5 35	0 0 0 0.0 0.15722466 Method: ME- Duplicate 1 <<0.3 2.7 14 1.7 12 11 44	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51 33	0 0 0 2 N040/AN: RPD % 30 0 13 9 17 2 23 24
Original SE209734.003	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 1 - - LOR 1 0.3 0.5 0.5 0.5 1 2 1 0.3	<0.2 <0.2 <1 0 0 0 0 0 0 1 1 <0.3 2.4 12 1.4 12 8.5 35 0.5	0 0 0 0.15722466 Method: ME- Duplicate 1 <<0.3 2.7 14 1.7 12 11 44 0.7	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51 33 82	0 0 0 2 N040/AN: RPD % 30 0 13 9 17 2 23 24 29
Original SE209734.003	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) s by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg	0.2 0.2 0.2 1 - - - - - - - - - - - - - - - - - -	<0.2 <0.2 <1 0 Original 1 <0.3 2.4 12 1.4 12 8.5 35 0.5 10	0 0 0 0 0.15722466 Method: ME- Duplicate 1 <<0.3 2.7 14 1.7 12 11 11 44 44 0.7 10	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51 33 82 35	0 0 0 2 N040/AN3 RPD % 30 0 13 9 17 2 23 24 29 1
Original SE209734.003	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) s by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Low Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg	0.2 0.2 0.2 1 - 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5	<0.2 <0.2 <1 0 0 0 0 0 0 0 1 1 <0.3 2.4 12 1.4 12 8.5 35 0.5 10 30 4.7	0 0 0 0.15722466 Method: ME- Duplicate 1 <<0.3 2.7 14 1.7 12 11 11 44 0.7 10 34 5.7	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51 33 82 33 82 35 32 40	0 0 0 2 N040/AN3 RPD % 30 0 13 9 17 2 2 3 24 29 1 1 3 24 29 1 1 3 20
Original SE209734.003	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg	0.2 0.2 0.2 1 - 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 1 0.3 0.5 0.5 0.5 1	<0.2 <0.2 <1 0 0 0 0 0 0 1 1 <0.3 2.4 12 1.4 12 8.5 35 0.5 10 30 4.7 130	0 0 0 0.0 0.15722466 Method: ME- Duplicate 1 - 0.3 2.7 14 1.7 12 11 14 4 4 0.7 10 34 5.7 140	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51 33 82 33 82 35 32 40 31	0 0 0 2 N040/AN3 RPD % 30 0 13 9 17 2 2 3 24 29 1 1 3 20 1
Original SE209734.003	Duplicate LB206465.014		Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) s by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Low Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg	0.2 0.2 0.2 1 - 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5	<0.2 <0.2 <1 0 0 0 0 0 0 0 1 1 <0.3 2.4 12 1.4 12 8.5 35 0.5 10 30 4.7	0 0 0 0.15722466 Method: ME- Duplicate 1 <<0.3 2.7 14 1.7 12 11 11 44 0.7 10 34 5.7	200 200 200 30 (AU)-[ENV]A Criteria % 111 200 50 34 62 38 51 33 82 33 82 35 32 40	0 0 0 2 N040/AN3 RPD % 30 0 13 9 17 2 2 3 24 29 1 1 3 20

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

		te Solids/Materials						E-(AU)-[ENV]A	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE209734.014	LB206572.024		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	6.3	5.6	38	11
			Copper, Cu	mg/kg	0.5	4.7	4.4	41	8
			Nickel, Ni	mg/kg	0.5	3.0	2.9	47	4
			Lead, Pb	mg/kg	1	9	7	42	20
			Zinc, Zn	mg/kg	2	14	14	44	5
SE209889.010	LB206572.014		Lead, Pb	mg/kg	1	1300	1400	30	10
02200000.010	20200072.014		Zinc, Zn	mg/kg	2	220	250	31	10
			200, 20	ilig/kg	2	220			
race Metals (Dise	solved) in Water by ICI	PMS					Met	hod: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE209719.003	LB206353.014		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Copper, Cu	μg/L	1	<1	<1	200	0
			Zinc, Zn	µg/L	5	12	13	55	7
SE209738.002	LB206353.028		Arsenic, As	μg/L	1	<1	<1	126	0
			Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	μg/L	1	1	1	97	3
			Copper, Cu	μg/L	1	6	6	31	3
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni		1	4	4	39	2
			Zinc, Zn	μg/L	5	4	10	65	2
SE209758.001	1 0000050 000			μg/L	5		4		
SE209758.001	LB206353.033		Arsenic, As	μg/L		3		44	2
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	μg/L	1	4	4	42	5
			Copper, Cu	μg/L	1	3	3	50	8
			Lead, Pb	μg/L	1	3	4	44	24
			Nickel, Ni	µg/L	1	<1	<1	160	0
			Zinc, Zn	μg/L	5	6	8	88	24
RH (Total Recov	erable Hydrocarbons)	in Soil					Mett	hod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
						-			
SE209734.010	LB206362.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16		25	-05	-25	200	0
		TRITT Danus	1117-010-010	mg/kg	25	<25	<25	200	
		TRITI Danus	TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg	25	<25	<25	200	0
		HATT Danus							
		HIT Balos	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg	25 90	<25 <90 <120	<25 <90	200 200	0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg	25 90 120 20	<25 <90 <120 <20	<25 <90 <120 <20	200 200 200 200	0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45	<25 <90 <120 <20 <45	<25 <90 <120 <20 <45	200 200 200 200 200	0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45	<25 <90 <120 <20 <45 <45	<25 <90 <120 <20 <45 <45	200 200 200 200 200 200 200	0 0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100	<25 <90 <120 <20 <45 <45 <45 <100	<25 <90 <120 <20 <45 <45 <100	200 200 200 200 200 200 200 200	0 0 0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110	<25 <90 <120 <20 <45 <45 <100 <110	<25 <90 <120 <20 <45 <45 <100 <110	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210	<pre><25 <90 <120 <20 <45 <45 <100 <110 <210</pre>	<pre><25 <90 <120 <220 <45 <45 <100 <110 <210</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0
SE209734.014	LB206362.019	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25	<pre><25 <90 <120 <20 <45 <45 <100 <110 <210 <25</pre>	<pre><25 <90 <120 <220 <45 <45 <100 <110 <210 <25</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	<pre><25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25 25 90	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90	<pre><25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25 <90</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0
SE209734.014	LB206362.019		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25	<pre><25 <90 <120 <20 <45 <45 <100 <110 <210 <225 <25</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0
	LB206362.019	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25 25 90	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90	<pre><25 <90 <120 <220 <45 <45 <100 <110 <210 <225 <25 <90 <120</pre>	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov		TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25 25 90	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Metheral Statement of the second	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 (F3) TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25 90 120 LOR	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 Original	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Meti	200 200 200 200 200 200 200 200 200 200	RPD
' <mark>RH (Total Recov</mark> Original	erable Hydrocarbons)	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 20 45 45 100 110 210 25 25 90 120 120	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Mether Duplicate 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE209734.014 RH (Total Recov Original SE209738.001	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg	25 90 120 20 45 45 100 110 210 25 25 90 120 LOR 50 200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50 <200	<25 <90 <120 <20 <45 <100 <110 <210 <25 <25 <90 <120 Mether Duplicate 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - C34 (F3) TRH >C10-C14 TRH >C34-C40 (F4)	mg/kg mg/kg<	25 90 120 20 45 45 100 110 210 25 25 90 120 120 LOR 50 200 200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50 <200 <200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Mether Duplicate 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>RH (Total Recov</mark> Original	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - C14 TRH >C34-C40 (F4)	mg/kg mg/kg<	25 90 120 20 45 45 100 110 210 25 25 90 120 120 LOR 50 200 200 200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50 <200 <200 <200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Met Duplicate 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>RH (Total Recov</mark> Original	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C34-C40 (F4)	mg/kg mg/kg<	25 90 120 20 45 45 100 110 210 25 25 25 90 120 LOR 50 200 200 200 200 320	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50 <200 <200 <320	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <90 <120 Meti Duplicate 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' <mark>RH (Total Recov</mark> Original	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - C14 TRH >C34-C40 (F4)	mg/kg mg/kg<	25 90 120 20 45 45 100 110 210 25 25 90 120 120 LOR 50 200 200 200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50 <200 <200 <200	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Met Duplicate 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RH (Total Recov	erable Hydrocarbons) Duplicate	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C34-C40 (F4)	mg/kg mg/kg<	25 90 120 20 45 45 100 110 210 25 25 25 90 120 LOR 50 200 200 200 200 320	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 Original <50 <200 <200 <320	<25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <90 <120 Meti Duplicate 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

•	erable Hydrocarbons		·		1.000			1: ME-(AU)-[-
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE209738.001	LB206302.025	TRH F Bands	TRH >C34-C40 (F4)	µg/L	500	<500	0	200	0
OC's in Soil							Method	: ME-(AU)-[envjan
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD ^o
SE209734.010	LB206360.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.9	8.3	50	7
			d8-toluene (Surrogate)	mg/kg	-	8.5	7.9	50	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.4	9.4	50	10
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE209734.014	LB206360.022	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0	200	0
			o-xylene	mg/kg	0.1	<0.1	0	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	8.2077633525	50	4
			d8-toluene (Surrogate)	mg/kg	-	7.5	8.0183387572	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.2731268813	50	5
		Totals	Total Xylenes	mg/kg	0.3	<0.3	0	200	0
			Total BTEX	mg/kg	0.6	<0.6	0	200	0
OCs in Water							Method	: ME-(AU)-[ENVJAI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate 0	Criteria %	RPD
SE209758.001	LB206387.022	Monocyclic	Benzene	µg/L	0.5	<0.5	0	200	0
2200700.001	EBE00001.0EE	Aromatic	Toluene	μg/L	0.5	<0.5	0.0812195947	200	0
		Alomado	Ethylbenzene	μg/L	0.5	<0.5	0	200	0
			m/p-xylene	μg/L	1	<1	0	200	0
			o-xylene	μg/L	0.5	<0.5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L		10.2	9.0407004248	30	12
		Sunogates	d8-toluene (Surrogate)	μg/L		9.8	10.5603907184	30	8
			Bromofluorobenzene (Surrogate)	μg/L	_	10.2	10.3156820185	30	1
				P9/L		10.2			-
	Hydrocarbons in Soi							1: ME-(AU)-[
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD
SE209734.010	LB206360.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.9	8.3	30	7
			d8-toluene (Surrogate)	mg/kg	-	8.5	7.9	30	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.4	9.4	30	10
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE209734.014	LB206360.022		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	8.2077633525	30	4
			d8-toluene (Surrogate)	mg/kg	-	7.5	8.0183387572	30	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	8.2731268813	30	5
			Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
		VPH F Bands	Bonzene (r e)						
		VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	0	200	0
olatile Petroleum	Hydrocarbons in Wa			mg/kg	25	<25			
	Hydrocarbons in Wa		TRH C6-C10 minus BTEX (F1)				Method	1: ME-(AU)-[ENVJA
Original	Duplicate	ter	TRH C6-C10 minus BTEX (F1) Parameter	Units	LOR	Original	Method Duplicate	<mark>d: ME-(AU)-[</mark> Criteria %	<mark>envja</mark> i RPD
	-		TRH C6-C10 minus BTEX (F1) Parameter d4-1,2-dichloroethane (Surrogate)	Units μg/L	LOR	Original 10	Method Duplicate (10	<mark>d: ME-(AU)-[</mark> Criteria % 30	ENVJAI RPD 3
Original	Duplicate	ter	TRH C6-C10 minus BTEX (F1) Parameter d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units µg/L µg/L	LOR -	Original 10 10	Method Duplicate (10 10	<mark>d: ME-(AU)-[</mark> Criteria % 30 30	ENVJAN RPD 3 5
Original	Duplicate	ter	TRH C6-C10 minus BTEX (F1) Parameter d4-1,2-dichloroethane (Surrogate)	Units μg/L	LOR	Original 10	Method Duplicate (10	<mark>d: ME-(AU)-[</mark> Criteria % 30	ENVJAN RPD ' 3

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum	Hydrocarbons in Wa	ter (continued)					Metho	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209758.001	LB206387.022		TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.2	9.0407004248	30	12
			d8-toluene (Surrogate)	μg/L	-	9.8	10.5603907184	30	8
			Bromofluorobenzene (Surrogate)	μg/L	-	10.2	10.3156820185	30	1
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	0	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Mercury	mg/kg	0.05	0.21	0.2	70 - 130	105
Mercury	mg/kg	0.05	0.22	0.2	70 - 130	109
-	Parameter Mercury Mercury	Mercury mg/kg	Mercury mg/kg 0.05	Mercury mg/kg 0.05 0.21	Mercury mg/kg 0.05 0.21 0.2	Mercury mg/kg 0.05 0.21 0.2 70 - 130

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB206362.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	104		
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	94		
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	95		
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	97		
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	101		
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	88		
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	91		
OP Pesticides in S	oil					Method: ME-(AU)-[ENV] Expected Criteria % Recov 2 60 - 140 74 2 60 - 140 84 2 60 - 140 84 2 60 - 140 74				
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB206362.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	78		
		Diazinon (Dimpylate)	mg/kg	0.5	1.6	2	60 - 140	81		
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.5	2	60 - 140	77		
		Ethion	mg/kg	0.2	1.5	2	60 - 140	74		
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92		
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78		
AH (Polynuclear)	Aromatic Hydroca	irbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN42		
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB206362.002		Naphthalene	mg/kg	0.1	4.1	4	60 - 140	103		
		Acenaphthylene	mg/kg	0.1	4.1	4	60 - 140	103		
		Acenaphthene	mg/kg	0.1	4.4	4	60 - 140	111		
		Phenanthrene	mg/kg	0.1	3.8	4	60 - 140	96		
		Anthracene	mg/kg	0.1	4.2	4	60 - 140	106		
		Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	113		
		Pyrene	mg/kg	0.1	4.4	4	60 - 140	111		
		Benzo(a)pyrene	mg/kg	0.1	2.9	4	60 - 140	72		
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80		

	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
PCBs in Soil					N	/lethod: ME-(A	U)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB206362.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	84

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements	al Recoverable Elements in Soll/Waste Solids/Materials by ICPOES					ME-(AU)-[EN\	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB206465.002	Arsenic, As	mg/kg	1	320	318.22	80 - 120	99
	Cadmium, Cd	mg/kg	0.3	5.2	5.41	80 - 120	97
	Chromium, Cr	mg/kg	0.5	38	38.31	80 - 120	99
	Copper, Cu	mg/kg	0.5	290	290	80 - 120	99
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	99
	Lead, Pb	mg/kg	1	91	89.9	80 - 120	102
	Zinc, Zn	mg/kg	2	250	273	80 - 120	93
LB206572.002	Arsenic, As	mg/kg	1	320	318.22	80 - 120	101
	Cadmium, Cd	mg/kg	0.3	5.0	5.41	80 - 120	92
	Chromium, Cr	mg/kg	0.5	36	38.31	80 - 120	95
	Copper, Cu	mg/kg	0.5	280	290	80 - 120	96
	Nickel, Ni	mg/kg	0.5	180	187	80 - 120	95
	Lead, Pb	mg/kg	1	91	89.9	80 - 120	102
	Zinc, Zn	mg/kg	2	260	273	80 - 120	95
Trace Metals (Dissolved) in V	letals (Dissolved) in Water by ICPMS				N	Nethod: ME-(A	U)-[ENV]AN318

Sample Number	Parameter	Units	LOR

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

O a manual a Alla marks a m	weu) in water by	ICPMS (continued)					Method: ME-(AL	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB206353.002		Arsenic, As	μg/L	1	18	20	80 - 120	92
		Cadmium, Cd	μg/L	0.1	20	20	80 - 120	101
		Chromium, Cr	µg/L	1	21	20	80 - 120	106
		Copper, Cu	μg/L	1	22	20	80 - 120	108
		Lead, Pb	µg/L	1	21	20	80 - 120	105
		Nickel, Ni	µg/L	1	21	20	80 - 120	103
		Zinc, Zn	µg/L	5	21	20	80 - 120	106
RH (Total Recover	able Hydrocarbor	·					Method: ME-(AL	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB206362.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	103
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	85
	TRH F Bands	TRH >C10-C16	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	103
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
RH (Total Recover	able Hydrocarbor	ns) in Water					Method: ME-(AL	J)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B206302.002		TRH C10-C14	µg/L	50	1200	1200	60 - 140	100
		TRH C15-C28	µg/L	200	1500	1200	60 - 140	126
		TRH C29-C36	µg/L	200	1600	1200	60 - 140	132
	TRH F Bands	TRH >C10-C16	μg/L	60	1300	1200	60 - 140	112
		TRH >C16-C34 (F3)	μg/L	500	1600	1200	60 - 140	135
		TRH >C34-C40 (F4)	μg/L	500	820	600	60 - 140	136
			μ9/ε	500	020			
OC's in Soil							Method: ME-(AU	J)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B206360.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	4.0	5	60 - 140	80
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	4.9	5	60 - 140	98
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	4.5	5	60 - 140	90
	Halogenated	Chlorobenzene	mg/kg	0.1	5.1	5	60 - 140	103
		Benzene		0.1	4.6	5	60 - 140	92
	Monocyclic		mg/kg					
	Aromatic	Toluene	mg/kg	0.1	4.6	5	60 - 140	93
		Ethylbenzene	mg/kg	0.1	4.8	5	60 - 140	97
		m/p-xylene	mg/kg	0.2	9.7	10	60 - 140	97
		o-xylene	mg/kg	0.1	5.0	5	60 - 140	99
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
		d8-toluene (Surrogate)	mg/kg	-	9.0	10	70 - 130	90
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.3	10	70 - 130	93
	Trihalomethan	Chloroform	mg/kg	0.1	4.8	5	60 - 140	96
OCs in Water							Anthony ME (AL	
							Method: ME-(AU	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
_B206387.002	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	μg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	µg/L	0.5	49	45.45	60 - 140	108
		m/p-xylene	µg/L	1	97	90.9	60 - 140	107
		o-xylene	µg/L	0.5	50	45.45	60 - 140	109
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	μg/L	-	10.3	10	70 - 130	103
		Bromofluorobenzene (Surrogate)	μg/L	-	10.0	10	70 - 130	100
	warocarbons in S	ioli					Method: ME-(AL	
olatile Petroleum H			Units	LOR	Result	Expected	Criteria %	Recover
		Parameter	Ullits					
<mark>olatile Petroleum H</mark> Sample Number _B206360.002		Parameter TRH C6-C10	mg/kg	25	81	92.5	60 - 140	87
Sample Number			mg/kg	25 20	81 70	92.5 80		87 88
Sample Number	-	TRH C6-C10 TRH C6-C9	mg/kg mg/kg		70	80	60 - 140 60 - 140	88
Sample Number	Surrogates	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg	20 -	70 10.1	80 10	60 - 140 60 - 140 70 - 130	88 101
Sample Number	Surrogates	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg	20 - -	70 10.1 9.3	80 10 10	60 - 140 60 - 140 70 - 130 70 - 130	88 101 93
ample Number	-	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg	20 -	70 10.1	80 10	60 - 140 60 - 140 70 - 130	88 101
ample Number	Surrogates VPH F Bands	TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg	20 - -	70 10.1 9.3	80 10 10 62.5	60 - 140 60 - 140 70 - 130 70 - 130	88 101 93 83

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum I	platile Petroleum Hydrocarbons in Water (continued)							U)-[ENV]AN433
Sample Number	ample Number Parameter Units				Result	Expected	Criteria %	Recovery %
LB206387.002		TRH C6-C10	μg/L	50	850	946.63	60 - 140	90
		TRH C6-C9	μg/L	40	740	818.71	60 - 140	91
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	μg/L	-	10.3	10	70 - 130	103
		Bromofluorobenzene (Surrogate)	μg/L	-	10.0	10	70 - 130	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	550	639.67	60 - 140	86

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209716.001	LB206466.004	Mercury	mg/kg	0.05	0.20	<0.05	0.2	96

OC Pesticides in Soil

C Pesticides in	Soil					M	ethod: ME-(AU)-[E
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
E209734.002	LB206362.020	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
		Alpha BHC	mg/kg	0.1	<0.1	-	-
		Lindane	mg/kg	0.1	<0.1	-	-
		Heptachlor	mg/kg	0.1	<0.1	0.2	119
		Aldrin	mg/kg	0.1	<0.1	0.2	104
		Beta BHC	mg/kg	0.1	<0.1	-	-
		Delta BHC	mg/kg	0.1	<0.1	0.2	83
		Heptachlor epoxide	mg/kg	0.1	0.1	-	-
		o,p'-DDE	mg/kg	0.1	<0.1	-	-
		Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
		Gamma Chlordane	mg/kg	0.1	1.1	-	-
		Alpha Chlordane	mg/kg	0.1	1.3	-	-
		trans-Nonachlor mg/kg	0.1	0.8	-	-	
	p,p'-DDE	mg/kg	0.1	0.2	-	-	
		p,p.due mg/kg Dieldrin mg/kg	mg/kg	0.2	0.9	0.2	-163 ⑤
		Endrin	mg/kg	0.2	<0.2	0.2	115
		o,p'-DDD	mg/kg	0.1	<0.1	-	-
		o,p'-DDT	mg/kg	0.1	<0.1	-	-
		Beta Endosulfan	mg/kg	0.2	<0.2	-	-
		p,p'-DDD	mg/kg	0.1	<0.1	-	-
		p,p'-DDT	mg/kg	0.1	<0.1	0.2	81
		Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
		Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
		Methoxychlor	mg/kg	0.1	<0.1	-	-
		Endrin Ketone	mg/kg	0.1	<0.1	-	-
		Isodrin	mg/kg	0.1	<0.1	-	-
		Mirex	mg/kg	0.1	<0.1	-	-
		Total CLP OC Pesticides	mg/kg	1	4	-	-
	Surr	ogates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	-	109
H (Polynuclea	r Aromatic Hydrocarbons) in	Soil				M	ethod: ME-(AU)-[E

Units LOR Original Spike Recovery% QC Sample Sample Number Parameter SE209734.002 LB206362.022 Naphthalene 0.1 <0.1 108 mg/kg 4 2-methylnaphthalene mg/kg 0.1 <0.1 1-methylnaphthalene mg/kg 0.1 <0.1 Acenaphthylene 0.1 <0.1 104 4 mg/kg Acenaphthene 0.1 <0.1 4 111 mg/kg Fluorene mg/kg 0.1 <0.1 Phenanthrene 0.1 <0.1 94 mg/kg 4 Anthracene 0.1 <0.1 4 105 mg/kg Fluoranthene mg/kg 0.1 <0.1 4 110 0.1 <0.1 112 Pyrene 4 mg/kg Benzo(a)anthracene <0.1 mg/kg 0.1 Chrysene mg/kg 0.1 <0.1 Benzo(b&j)fluoranthene <0.1 mg/kg 0.1 <0.1 Benzo(k)fluoranthene mg/kg 0.1 -Benzo(a)pyrene mg/kg 0.1 <0.1 4 98 <0.1 Indeno(1,2,3-cd)pyrene 0.1 mg/kg -Dibenzo(ah)anthracene <0.1 mg/kg 0.1 --Benzo(ghi)perylene mg/kg 0.1 <0.1 Carcinogenic PAHs, BaP TEQ <LOR=0 0.2 <0.2 TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <LOR=LOR 0.3 <0.3 TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 TEQ (mg/kg) 0.2 <0.2 -Total PAH (18) mg/kg 0.8 <0.8 74 Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.4 --

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	ar Aromatic Hydrocart				LOB	Ontartartar		ethod: ME-(AU)	frank a bena
	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
E209734.002	LB206362.022	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	73	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	77	
tal Recoverab	le Elements in Soil/W	aste Solids/Mater	als by ICPOES				Method: N	IE-(AU)-[ENV]A	N040/AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E209716.001	LB206465.004		Arsenic, As	mg/kg	1	45	2	50	86
			Cadmium, Cd	mg/kg	0.3	39	<0.3	50	78
			Chromium, Cr	mg/kg	0.5	48	5.3	50	86
			Copper, Cu	mg/kg	0.5	120	76	50	81
			Nickel, Ni	mg/kg	0.5	47	3.9	50	87
			Lead, Pb	mg/kg	1	55	15	50	79
			Zinc, Zn	mg/kg	2	70	31	50	77
SE209889.001	LB206572.004		Lead, Pb	mg/kg	1	80	62	50	37 @
			Zinc, Zn	mg/kg	2	99	86	50	27 ④
race Metals (Di	issolved) in Water by	CPMS					Me	thod: ME-(AU)	
	· · ·		Poromotor	Unito	LOR	Booult			
QC Sample	Sample Number		Parameter	Units		Result	Original	Spike	Recove
E209686.018	LB206353.004		Arsenic, As	μg/L	1	20	<1	20	99
			Cadmium, Cd	μg/L	0.1	22	<0.1	20	108
			Chromium, Cr	μg/L	1	22	<1	20	109
			Copper, Cu	μg/L	1	23	<1	20	112
			Lead, Pb	μg/L	1	22	<1	20	111
			Nickel, Ni	μg/L	1	21	<1	20	107
			Zinc, Zn	μg/L	5	24	<5	20	112
E209738.004	LB206353.030		Arsenic, As	μg/L	1	27	2	20	121
			Cadmium, Cd	µg/L	0.1	21	<0.1	20	106
			Chromium, Cr	µg/L	1	36	15	20	102
			Copper, Cu	µg/L	1	20	<1	20	98
			Lead, Pb	µg/L	1	21	<1	20	104
			Nickel, Ni	µg/L	1	21	2	20	95
			Zinc, Zn	µg/L	5	31	13	20	90
RH (Total Reco	overable Hydrocarbon	s) in Soil					Me	othod: ME-(AU)	-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE209734.002	LB206362.020		TRH C10-C14	mg/kg	20	<20	40	93	
			TRH C15-C28	mg/kg	45	<45	40	80	
			TRH C29-C36	mg/kg	45	<45	40	85	
			TRH C37-C40	mg/kg	100	<100	-	-	
			TRH C10-C36 Total	mg/kg	110	<110	_	_	
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	_	-	
					210			88	
		TRH F Bands	TRH >C10-C16		25	<25		00	
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	40	_	
		TRH F Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg	25	<25	-	- 73	
		TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg	25 90	<25 <90		73	
		TRH F Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg	25	<25	- 40 -	73 -	
		TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg	25 90 120	<25 <90 <120	- 40 - Me	73	
QC Sample	Sample Number		TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter	mg/kg mg/kg mg/kg	25 90	<25 <90 <120 Result	- 40 - Me Original	73 - sthod: ME-(AU) Spike	Recove
QC Sample	Sample Number LB206360.004	TRH F Bands	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg	25 90 120	<25 <90 <120 Result 3.2	- 40 - Me	73 - othod: ME-(AU) Spike 5	Recove 65
QC Sample			TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter	mg/kg mg/kg mg/kg mg/kg Units	25 90 120 LOR 0.1 0.1	<25 <90 <120 Result 3.2 3.4	- 40 - Me Original <0.1 <0.1	73 - sthod: ME-(AU)- Spike 5 5	Recove 65 68
QC Sample		Monocyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg Units mg/kg	25 90 120 LOR 0.1	<25 <90 <120 Result 3.2	- 40 - Me Original <0.1	73 - othod: ME-(AU) Spike 5	Recove 65
QC Sample		Monocyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	25 90 120 LOR 0.1 0.1	<25 <90 <120 Result 3.2 3.4	- 40 - Me Original <0.1 <0.1	73 - sthod: ME-(AU)- Spike 5 5	Recove 65 68
QC Sample		Monocyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	25 90 120 LOR 0.1 0.1 0.1	<25 <90 <120 Result 3.2 3.4 3.6	- 40 - Me Original <0.1 <0.1 <0.1	73 - sthod: ME-(AU)- Spike 5 5 5 5	Recove 65 68 73
QC Sample		Monocyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	25 90 120 LOR 0.1 0.1 0.1 0.1 0.2	<25 <90 <120 Result 3.2 3.4 3.6 7.3	- 40 - Me Original <0.1 <0.1 <0.1 <0.1 <0.2	73 - sthod: ME-(AU)- Spike 5 5 5 5 10	Recove 65 68 73 73
QC Sample		Monocyclic Aromatic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 LOR 0.1 0.1 0.1 0.1 0.2 0.1	<25 <90 <120 Result 3.2 3.4 3.6 7.3 3.7	- 40 - Me Original <0.1 <0.1 <0.1 <0.1 <0.2 <0.1	73 - sthod: ME-(AU) Spike 5 5 5 5 10 5	Recove 65 68 73 73 75
QC Sample		Monocyclic Aromatic Polycyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.1 0.1	<25 <90 <120 Result 3.2 3.4 3.6 7.3 3.7 <0.1	- 40 - Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	73 - sthod: ME-(AU) Spike 5 5 5 10 5 -	Recove 65 68 73 73 75 -
OC's in Soil QC Sample SE209734.001		Monocyclic Aromatic Polycyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.1 0.1 -	<25 <90 <120 Result 3.2 3.4 3.6 7.3 3.7 <0.1 8.7	- 40 - Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 8.4	73 - sthod: ME-(AU) Spike 5 5 5 5 10 5 - 10	Recove 65 68 73 73 73 75 - 87
QC Sample		Monocyclic Aromatic Polycyclic	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 - -	<25 <90 <120 Result 3.2 3.4 3.6 7.3 3.7 <0.1 8.7 8.2	- 40 - Me Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <7.9	73 - sthod: ME-(AU) Spike 5 5 5 10 5 - 10 10 10	Recove 65 68 73 73 75 - 87 87 82
C Sample		Monocyclic Aromatic Polycyclic Surrogates	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 - -	<25 <90 <120 Result 3.2 3.4 3.6 7.3 3.7 <0.1 8.7 8.2 8.5	- 40 - Me Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.8 8.8	73 - sthod: ME-(AU) Spike 5 5 5 10 5 - 10 10 10 10	Recove 65 68 73 73 73 75 - 87 87 82 85
C Sample		Monocyclic Aromatic Polycyclic Surrogates	TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25 90 120 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - 0.3	<25 <90 <120	- 40 - Me Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	73 - sthod: ME-(AU) Spike 5 5 5 10 5 - 10 10 10 10 10 -	Recove 65 68 73 73 75 - 87 87 82 85 - -

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

00.0			Damanastan	11-4	100	Desult	Quininad	011	Deserve
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE209734.015	LB206387.023	Monocyclic	Benzene	μg/L	0.5	53	<0.5	45.45	117
		Aromatic	Toluene	μg/L	0.5	55	<0.5	45.45	120
			Ethylbenzene	μg/L	0.5	54	<0.5	45.45	119
			m/p-xylene	μg/L	1	110	<1	90.9	120
			o-xylene	μg/L	0.5	54	<0.5	45.45	118
		Polycyclic	Naphthalene	µg/L	0.5	50	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.6	10.2	-	96
			d8-toluene (Surrogate)	μg/L	-	10.1	9.8	-	101
			Bromofluorobenzene (Surrogate)	μg/L	-	10.5	10.0	-	105
olatile Petroleur	n Hydrocarbons in	Soil					Met	nod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recover
SE209734.001	LB206360.004		TRH C6-C10	mg/kg	25	71	<25	92.5	77
			TRH C6-C9	mg/kg	20	62	<20	80	78
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	8.4	10	87
			d8-toluene (Surrogate)	mg/kg	-	8.2	7.9	10	82
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	8.8	-	85
		VPH F	Benzene (F0)	mg/kg	0.1	3.2	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	50	<25	62.5	80
olatile Petroleur	n Hydrocarbons in '	Water					Mett	nod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recover
SE209734.015	LB206387.023		TRH C6-C10	µg/L	50	990	<50	946.63	104
			TRH C6-C9	µg/L	40	850	<40	818.71	104
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10	10.2	-	96
			d8-toluene (Surrogate)	µg/L	-	10	9.8	-	101
			Bromofluorobenzene (Surrogate)	µg/L	-	10	10.0	-	105
		VPH F	Benzene (F0)	μg/L	0.5	53	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	660	<50	639.67	103

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

Contact	Ian Watts	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	lan.watts@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkham	SGS Reference	SE209734A R0
Order Number	E24782	Date Received	20 Aug 2020
Samples	18	Date Reported	27 Aug 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC	2 items
Analysis Date	TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC	4 items

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	3 Soil
Date documentation received	20/8/2020@11:10an	Type of documentation received	Email
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	14°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety U

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 Australia f +61

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

	100050						Matheade		
Metals in TCLP Extract by ICPOES Method: ME-(AU)-{ENV									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH7_1.0-1.1	SE209734A.010	LB207655	05 Aug 2020	20 Aug 2020	01 Feb 2021	27 Aug 2020	01 Feb 2021	27 Aug 2020	
BH8_0.1-0.2	SE209734A.012	LB207655	05 Aug 2020	20 Aug 2020	01 Feb 2021	27 Aug 2020	01 Feb 2021	27 Aug 2020	
PAH (Polynuclear Aromatic	PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract Method: ME-(AU)-[ENV]								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M_0.7-0.8	SE209734A.001	LB207235	05 Aug 2020	20 Aug 2020	26 Aug 2020	21 Aug 2020	30 Sep 2020	27 Aug 2020	
BH7_1.0-1.1	SE209734A.010	LB207235	05 Aug 2020	20 Aug 2020	26 Aug 2020	21 Aug 2020	30 Sep 2020	27 Aug 2020	
TCLP (Toxicity Characterist	ICLP (Toxicity Characteristic Leaching Procedure) for Metals Method: ME-(AU)-[ENV]AN0								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH8_0.1-0.2	SE209734A.012	LB207498	05 Aug 2020	20 Aug 2020	01 Feb 2021	25 Aug 2020	01 Feb 2021	27 Aug 2020	

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC Method: ME-(AU)-[EN								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.7-0.8	SE209734A.001	LB207497	05 Aug 2020	20 Aug 2020	19 Aug 2020	25 Aug 2020†	19 Aug 2020	27 Aug 2020†
BH7_1.0-1.1	SE209734A.010	LB207497	05 Aug 2020	20 Aug 2020	19 Aug 2020	25 Aug 2020†	19 Aug 2020	27 Aug 2020†

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract	Method: ME-(AU)-[ENV]AN420				
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M_0.7-0.8	SE209734A.001	%	40 - 130%	51
	BH7_1.0-1.1	SE209734A.010	%	40 - 130%	65
d14-p-terphenyl (Surrogate)	BH1M_0.7-0.8	SE209734A.001	%	40 - 130%	78
	BH7_1.0-1.1	SE209734A.010	%	40 - 130%	92
d5-nitrobenzene (Surrogate)	BH1M_0.7-0.8	SE209734A.001	%	40 - 130%	42
	BH7_1.0-1.1	SE209734A.010	%	40 - 130%	42

SE209734A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOES		Metho	od: ME-(AU)-[ENV]AN320
Sample Number Parameter	Units	LOR	Result
LB207655.001 Lead, Pb	mg/L	0.02	<0.02

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

PAH (Polynuclear Aron	AH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract				
Sample Number	Sample Number Parameter				Result
LB207235.001		Benzo(a)pyrene	μg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	62
		2-fluorobiphenyl (Surrogate)	%	-	66
		d14-p-terphenyl (Surrogate)	%	-	90

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original Duplicate Parameter

Units LOR

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOES Method: ME-(AU)-[ENV]AN3:						U)-[ENV]AN320		
Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB207655.002	Lead, Pb		mg/L	0.02	0.48	0.5	80 - 120	95

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB207235.002		Benzo(a)pyrene	μg/L	0.1	44	40	60 - 140	110
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.5	40 - 130	60
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.5	40 - 130	64
		d14-p-terphenyl (Surrogate)	µg/L		0.4	0.5	40 - 130	84

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter Units LOR

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicative data, theoretical holding time exceeded and NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24782 The Hills Bowling Club, Baulkhan	SGS Reference	SE209989 R0
Order Number	E24782	Date Received	14 Aug 2020
Samples	7	Date Reported	21 Aug 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 14/8/2020 Yes 14°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 2 Soil, 5 Water COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

Method: ME-(AU)-[ENV]AN318

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wa	ater						Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE209989.001	LB206793	14 Aug 2020	14 Aug 2020	11 Sep 2020	17 Aug 2020	11 Sep 2020	17 Aug 2020
BH2M	SE209989.002	LB206793	14 Aug 2020	14 Aug 2020	11 Sep 2020	17 Aug 2020	11 Sep 2020	17 Aug 2020
BH4M	SE209989.003	LB206793	14 Aug 2020	14 Aug 2020	11 Sep 2020	17 Aug 2020	11 Sep 2020	17 Aug 2020
GWQD1	SE209989.004	LB206793	14 Aug 2020	14 Aug 2020	11 Sep 2020	17 Aug 2020	11 Sep 2020	17 Aug 2020
GWQR1	SE209989.007	LB206793	14 Aug 2020	14 Aug 2020	11 Sep 2020	17 Aug 2020	11 Sep 2020	17 Aug 2020
Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GWQTB1	SE209989.006	LB206845	14 Aug 2020	14 Aug 2020	28 Aug 2020	17 Aug 2020	22 Aug 2020	20 Aug 2020
PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-(ENV)AN								ME-(AU)-[ENV]AN420

Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE209989.001	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	21 Aug 2020
SE209989.002	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	21 Aug 2020
SE209989.003	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	21 Aug 2020
SE209989.004	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	21 Aug 2020
SE209989.007	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	21 Aug 2020
	SE209989.001 SE209989.002 SE209989.003 SE209989.004	SE209989.001 LB206800 SE209989.002 LB206800 SE209989.003 LB206800 SE209989.004 LB206800	SE209989.001 LB206800 14 Aug 2020 SE209989.002 LB206800 14 Aug 2020 SE209989.003 LB206800 14 Aug 2020 SE209989.003 LB206800 14 Aug 2020 SE209989.004 LB206800 14 Aug 2020	SE209989.001 LB206800 14 Aug 2020 14 Aug 2020 SE209989.002 LB206800 14 Aug 2020 14 Aug 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 SE209989.004 LB206800 14 Aug 2020 14 Aug 2020	SE209989.001 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 SE209989.002 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 SE209989.004 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020	SE209989.001 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 SE209989.002 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 SE209989.004 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020	SE209989.001 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 26 Sep 2020 SE209989.002 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 26 Sep 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 26 Sep 2020 SE209989.003 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 26 Sep 2020 SE209989.004 LB206800 14 Aug 2020 14 Aug 2020 21 Aug 2020 17 Aug 2020 26 Sep 2020

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE209989.001	LB206871	14 Aug 2020	14 Aug 2020	11 Sep 2020	18 Aug 2020	11 Sep 2020	18 Aug 2020
BH2M	SE209989.002	LB206871	14 Aug 2020	14 Aug 2020	11 Sep 2020	18 Aug 2020	11 Sep 2020	18 Aug 2020
BH4M	SE209989.003	LB206871	14 Aug 2020	14 Aug 2020	11 Sep 2020	18 Aug 2020	11 Sep 2020	18 Aug 2020
			-	-		-		

Trace Metals	(Dissolved)	in Water	by ICPMS

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE209989.001	LB206783	14 Aug 2020	14 Aug 2020	10 Feb 2021	14 Aug 2020	10 Feb 2021	17 Aug 2020
BH2M	SE209989.002	LB206783	14 Aug 2020	14 Aug 2020	10 Feb 2021	14 Aug 2020	10 Feb 2021	17 Aug 2020
BH4M	SE209989.003	LB206783	14 Aug 2020	14 Aug 2020	10 Feb 2021	14 Aug 2020	10 Feb 2021	17 Aug 2020
GWQD1	SE209989.004	LB206783	14 Aug 2020	14 Aug 2020	10 Feb 2021	14 Aug 2020	10 Feb 2021	17 Aug 2020
GWQR1	SE209989.007	LB206783	14 Aug 2020	14 Aug 2020	10 Feb 2021	14 Aug 2020	10 Feb 2021	17 Aug 2020

TRH (Total Recoverable H	Method: ME-(AU)-[ENV]AN403							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE209989.001	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020
BH2M	SE209989.002	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020
BH4M	SE209989.003	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020
GWQD1	SE209989.004	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020
GWQR1	SE209989.007	LB206800	14 Aug 2020	14 Aug 2020	21 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020

VOC's in Soil								ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GWQTS1	SE209989.005	LB206842	14 Aug 2020	14 Aug 2020	28 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020
GWQTB1	SE209989.006	LB206842	14 Aug 2020	14 Aug 2020	28 Aug 2020	17 Aug 2020	26 Sep 2020	20 Aug 2020
Method: ME_(ALI)JEN/JA								

VOCS III Water							Meulou. I	VIE-(AU)-[EINV]AIN+33
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE209989.001	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
BH2M	SE209989.002	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
BH4M	SE209989.003	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
GWQD1	SE209989.004	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
GWQR1	SE209989.007	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020

Volatile Petroleum Hydrocarbons in Water

•								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE209989.001	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
BH2M	SE209989.002	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
BH4M	SE209989.003	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
GWQD1	SE209989.004	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020
GWQR1	SE209989.007	LB206946	14 Aug 2020	14 Aug 2020	21 Aug 2020	18 Aug 2020	27 Sep 2020	20 Aug 2020

Method: ME-(AU)-[ENV]AN433

SURROGATES

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN433

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M	SE209989.001	%	40 - 130%	68
	BH2M	SE209989.002	%	40 - 130%	56
	BH4M	SE209989.003	%	40 - 130%	62
d14-p-terphenyl (Surrogate)	BH1M	SE209989.001	%	40 - 130%	94
	BH2M	SE209989.002	%	40 - 130%	94
	BH4M	SE209989.003	%	40 - 130%	94
d5-nitrobenzene (Surrogate)	BH1M	SE209989.001	%	40 - 130%	50
	BH2M	SE209989.002	%	40 - 130%	42
	BH4M	SE209989.003	%	40 - 130%	44

VOC's in Soil

VOC's in Soil				Method: M	Method: ME-(AU)-[ENV]AN433		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %		
Bromofluorobenzene (Surrogate)	GWQTS1	SE209989.005	%	60 - 130%	98		
	GWQTB1	SE209989.006	%	60 - 130%	71		
d4-1,2-dichloroethane (Surrogate)	GWQTS1	SE209989.005	%	60 - 130%	101		
	GWQTB1	SE209989.006	%	60 - 130%	94		
d8-toluene (Surrogate)	GWQTS1	SE209989.005	%	60 - 130%	90		
	GWQTB1	SE209989.006	%	60 - 130%	93		

VOCs in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M	SE209989.001	%	40 - 130%	101
	BH2M	SE209989.002	%	40 - 130%	103
	BH4M	SE209989.003	%	40 - 130%	104
	GWQD1	SE209989.004	%	40 - 130%	103
	GWQR1	SE209989.007	%	40 - 130%	102
l4-1,2-dichloroethane (Surrogate)	BH1M	SE209989.001	%	40 - 130%	103
	BH2M	SE209989.002	%	40 - 130%	100
	BH4M	SE209989.003	%	40 - 130%	100
	GWQD1	SE209989.004	%	40 - 130%	101
	GWQR1	SE209989.007	%	40 - 130%	100
d8-toluene (Surrogate)	BH1M	SE209989.001	%	40 - 130%	103
	BH2M	SE209989.002	%	40 - 130%	98
	BH4M	SE209989.003	%	40 - 130%	98
	GWQD1	SE209989.004	%	40 - 130%	98
	GWQR1	SE209989.007	%	40 - 130%	98

Volatile Petroleum Hydrocarbons in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M	SE209989.001	%	40 - 130%	101
	BH2M	SE209989.002	%	40 - 130%	103
	BH4M	SE209989.003	%	40 - 130%	104
	GWQD1	SE209989.004	%	40 - 130%	103
	GWQR1	SE209989.007	%	40 - 130%	102
4-1,2-dichloroethane (Surrogate)	BH1M	SE209989.001	%	60 - 130%	103
	BH2M	SE209989.002	%	60 - 130%	100
	BH4M	SE209989.003	%	60 - 130%	100
	GWQD1	SE209989.004	%	60 - 130%	101
	GWQR1	SE209989.007	%	60 - 130%	100
d8-toluene (Surrogate)	BH1M	SE209989.001	%	40 - 130%	103
	BH2M	SE209989.002	%	40 - 130%	98
	BH4M	SE209989.003	%	40 - 130%	98
	GWQD1	SE209989.004	%	40 - 130%	98
	GWQR1	SE209989.007	%	40 - 130%	98

SE209989 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Parameter

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB206793.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbons) in Wa	ter		Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB206800.001	Naphthalene	µg/L	0.1	<0.1
	2-methylnaphthalene	µg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	µg/L	0.1	<0.1
	Pyrene	µg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	64
	2-fluorobiphenyl (Surrogate)	%	-	70
	d14-p-terphenyl (Surrogate)	%	-	82
Total Phenolics in Water			Meth	od: ME-(AU)-[ENV]AN289
Sample Number	Parameter	Units	LOR	Result
LB206871.001	Total Phenols	mg/L	0.01	<0.01

race Metals (Dissolved) in Water by ICPN				od: ME-(AU)-[ENV]AN3
Sample Number	Parameter	Units	LOR	Result
_B206783.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	µg/L	5	<5

Sample Number	Parameter	Units	LOR	Result
LB206800.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	µg/L	200	<200

Method: ME-(ALI)-IENVIAN433

Units LOR

Monocyclic Aromatic	Parameter Benzene	Units	LOR	Result
-	Benzene			
		mg/kg	0.1	<0.1
Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	Ethylbenzene	mg/kg	0.1	<0.1
	m/p-xylene	mg/kg	0.2	<0.2
	o-xylene	mg/kg	0.1	<0.1
Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	93
	d8-toluene (Surrogate)	%	-	90
	Bromofluorobenzene (Surrogate)	%	-	78
Totals	Total BTEX	mg/kg	0.6	<0.6
	Surrogates	m/p-xylene o-xylene Polycyclic VOCs Naphthalene Surrogates d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	m/p-xylene mg/kg o-xylene mg/kg Polycyclic VOCs Naphthalene mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) % d8-toluene (Surrogate) % Bromofluorobenzene (Surrogate) %	m/p-xylene mg/kg 0.2 o-xylene mg/kg 0.1 Polycyclic VOCs Naphthalene mg/kg 0.1 Surrogates d4-1,2-dichloroethane (Surrogate) % - d8-toluene (Surrogate) % - Bromofluorobenzene (Surrogate) % -

Sample Number

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

	nued)				od: ME-(AU)-[ENV]A
nple Number		Parameter	Units	LOR	Result
06946.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	µg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	µg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	μg/L	5	<5
		1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	µg/L	0.5	<0.5
		1,1-dichloroethane	µg/L	0.5	<0.5
		cis-1,2-dichloroethene	μg/L	0.5	<0.5
				0.5	<0.5
		Bromochloromethane	μg/L		
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	μg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	µg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene		1	<1
			µg/L		
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	µg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	µg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene		0.5	<0.5
			μg/L		
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
				0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
	Hydrocarbons	Ethylbenzene	μg/Lμg/L	0.5	<0.5
	Hydrocarbons		µg/L		
	Hydrocarbons	Ethylbenzene m/p-xylene	μg/L μg/L	0.5	<0.5 <1
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L	0.5 1 0.5	<0.5 <1 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene)	μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5	<0.5 <1 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene)	μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1,3,5-trimethylbenzene	μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1,3,5-trimethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
		Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1.3,5-trimethylbenzene 1.2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	Hydrocarbons Nitrogenous Compounds Oxygenated Compounds	Ethylbenzene m/p-xylene o-xylene Styrene (Vinyl benzene) Isopropylbenzene (Cumene) n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

SE209989 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

VOCs in Water (continu	ued)			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB206946.001	Oxygenated Compounds	Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	96
	Trihalomethanes	Chloroform (THM)	µg/L	0.5	<0.5
		Bromodichloromethane (THM)	µg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hyd	Irocarbons in Water			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB206946.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	96

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[ENVJAN311(P	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209989.007	LB206793.011	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Moisture Content

Moisture Content	oisture Content Method: ME-(AU)-[ENV]AN00;					ENVJAN002		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209989.006	LB206845.011	% Moisture	%w/w	1	<1.0	<1.0	200	0
SE210012.002	LB206845.022	% Moisture	%w/w	1	10.9	10.4	39	4
SE210012.004	LB206845.025	% Moisture	%w/w	1	6.4	5.7	46	11

Tace Metals (Dis	solved) in Water by ICPMS					Meur	od: ME-(AU)-	EINVIAINO
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209989.007	LB206783.010	Arsenic, As	µg/L	1	<1	<1	200	0
	Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0	
		Chromium, Cr	µg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	1	<1	187	5
	Lead, Pb	µg/L	1	<1	<1	200	0	
		Nickel, Ni	µg/L	1	<1	<1	200	0
		Zinc, Zn	µg/L	5	<5	<5	200	0

TRH (Total Recov	verable Hydrocarbons)) in Water					Meth	od: ME-(AU)-[ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209969.001	LB206800.018		TRH C10-C14	μg/L	50	<50	<50	200	0
			TRH C15-C28	μg/L	200	220	260	113	20
			TRH C29-C36	μg/L	200	<200	<200	200	0
			TRH C37-C40	μg/L	200	<200	<200	200	0
			TRH C10-C40	μg/L	320	<320	<320	163	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	<500	200	0

VOC's in Soil							Metho	od: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210010.002	LB206842.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	9.1	50	1
			d8-toluene (Surrogate)	mg/kg	-	9.1	9.0	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.0	6.8	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE210012.004	LB206842.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.8	9.7	50	2
			d8-toluene (Surrogate)	mg/kg	-	9.8	9.7	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.4	7.4	50	0
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
VOCs in Water							Metho	d: ME-(AU)-	(ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209989.003	LB206946.023	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			1,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
					0.5	<0.5			

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

riginal	ontinued)		Doromotor		LOD-	Original			
riginal	Duplicate	_ · ·	Parameter	Units	LOR	Original	Duplicate (
209989.003	LB206946.023	Fumigants	trans-1,3-dichloropropene	µg/L	0.5	<0.5	0.0473461120	200	0
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	0.0022105899	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	0	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0.0124177308	200	0
			Bromomethane	µg/L	10	<10	0.0874880019	200	0
			Chloroethane	µg/L	5	<5	0.0300733197	200	0
			Trichlorofluoromethane	µg/L	1	<1	0.0015747388	200	0
			Iodomethane	µg/L	5	<5	0.0618671080	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	0.0108853100	200	0
			Dichloromethane (Methylene chloride)	µg/L	5	<5	0.8283209636	200	0
			Allyl chloride	µg/L	2	<2	0	200	0
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0.0214403453	200	0
			1,1-dichloroethane	µg/L	0.5	<0.5	0	200	0
			cis-1,2-dichloroethene	μg/L	0.5	<0.5	0	200	0
			Bromochloromethane	μg/L	0.5	<0.5	0.0358660548	200	0
			1,2-dichloroethane	μg/L	0.5	<0.5	0.0158712014	200	0
			1,1,1-trichloroethane	μg/L	0.5	<0.5	0	200	
			1,1-dichloropropene	μg/L	0.5	<0.5	0	200	(
			Carbon tetrachloride	µg/L	0.5	<0.5	0	200	(
			Dibromomethane	µg/L	0.5	<0.5	0	200	(
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	0.0291327962	200	(
			1,1,2-trichloroethane	μg/L	0.5	<0.5	0.0409314195	200	
			1,3-dichloropropane	µg/L	0.5	<0.5	0.3268797815	200	(
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	0.0061431434	200	
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	
			cis-1,4-dichloro-2-butene	µg/L	1	<1	0	200	
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	
			1,2,3-trichloropropane	μg/L	0.5	<0.5	0	200	
			trans-1,4-dichloro-2-butene	µg/L	1	<1	0	200	
			1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	0	200	
			Hexachlorobutadiene	µg/L	0.5	<0.5	0.0024342636	200	
		Halogenated	Chlorobenzene	μg/L	0.5	<0.5	0.0410405291	200	
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	0.0065913151	200	
		Alomatics	2-chlorotoluene		0.5	<0.5	0.2918609841	200	
				μg/L					
			4-chlorotoluene	μg/L	0.5	<0.5	0	200	
			1,3-dichlorobenzene	µg/L	0.5	<0.5	0.0058755963	200	
			1,4-dichlorobenzene	μg/L	0.3	<0.3	0.0054712749	200	
			1,2-dichlorobenzene	µg/L	0.5	<0.5	0.0398320188	200	
			1,2,4-trichlorobenzene	µg/L	0.5	<0.5	0	200	
			1,2,3-trichlorobenzene	µg/L	0.5	<0.5	0.0016061591	200	
		Monocyclic	Benzene	µg/L	0.5	<0.5	0.3365631121	179	
		Aromatic	Toluene	µg/L	0.5	1.7	1.5659148345	61	
			Ethylbenzene	µg/L	0.5	0.5	0.4998261835	129	
			m/p-xylene	µg/L	1	6	5.6155673474	47	
			o-xylene	µg/L	0.5	2.2	2.0569172601	54	
			Styrene (Vinyl benzene)	μg/L	0.5	<0.5	0.0664128307	200	
			Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	0	200	
			n-propylbenzene	μg/L	0.5	<0.5	0	200	
			1,3,5-trimethylbenzene	μg/L	0.5	1.5	1.5944110806	62	
			tert-butylbenzene		0.5	<0.5	0.0105829538	200	
				μg/L					
			1,2,4-trimethylbenzene	μg/L	0.5	3.4	3.4458962650	45	
			sec-butylbenzene	μg/L	0.5	<0.5	0	200	
			p-isopropyltoluene	µg/L	0.5	<0.5	0.0387731068	200	
			n-butylbenzene	µg/L	0.5	<0.5	0.0318523004	200	
		Nitrogenous	Acrylonitrile	μg/L	0.5	<0.5	0.0629249998	200	
		Oxygenated	Acetone (2-propanone)	µg/L	10	<10	0	200	
		Compounds	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	0.0246903939	200	
			Vinyl acetate	µg/L	10	<10	0	200	
			MEK (2-butanone)	µg/L	10	<10	0	200	
			NER (2-bulanone)	P9/L			0		

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal	Duplicate		Parameter	Units	LOR	Origina	Duplicate	Criter <u>ia %</u>	RPI
E209989.003	LB206946.023	Oxygenated	2-hexanone (MBK)	µg/L	5	<5	0	200	(
	282000 10.020	Polycyclic	Naphthalene	μg/L	0.5	0.8	0.7128944747	96	1
		Sulphonated	Carbon disulfide	μg/L	2	<2	0.0394883101	200	
					-	10.0	9.4084341590	30	
		Surrogates	_d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L	-		9.5489948744	30	
				μg/L	-	9.8			
			Bromofluorobenzene (Surrogate)	µg/L		10.4	9.7077465940	30	
		Trihalomethan	Chloroform (THM)	μg/L	0.5	7.2	6.7539063433	37	
		es	Bromodichloromethane (THM)	µg/L	0.5	<0.5	0.0012097233	200	
			Dibromochloromethane (THM)	µg/L	0.5	<0.5	0	200	
			Bromoform (THM)	µg/L	0.5	<0.5	0	200	
10059.002	LB206946.020	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	0	200	
			1,2-dichloropropane	µg/L	0.5	<0.5	0.0072160505	200	
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	0.0063778331	200	
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	0	200	
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	0.0456629701	200	
		Aliphatics	Chloromethane	µg/L	5	<5	0	200	
			Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	0.0456285832	200	
			Bromomethane	μg/L	10	<10	0	200	
			Chloroethane	μg/L	5	<5	0	200	
			Trichlorofluoromethane	μg/L	1	<1	0.0461198166	200	
			lodomethane	μg/L	5	<5	0.0707566722	200	
			1,1-dichloroethene		0.5	<0.5	0.0707500722	200	
				μg/L					
			Dichloromethane (Methylene chloride)	µg/L	5	<5	0	200	
			Allyl chloride	µg/L	2	<2	0	200	
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0.0332691996	200	
			1,1-dichloroethane	µg/L	0.5	<0.5	0	200	
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	0.0213587155	200	
			Bromochloromethane	µg/L	0.5	<0.5	0.0102324777	200	
			1,2-dichloroethane	µg/L	0.5	<0.5	0	200	
			1,1,1-trichloroethane	µg/L	0.5	<0.5	0	200	
			1,1-dichloropropene	µg/L	0.5	<0.5	0.0062753649	200	
			Carbon tetrachloride	µg/L	0.5	<0.5	0.0022198442	200	
			Dibromomethane	µg/L	0.5	<0.5	0.0055926211	200	
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	0	200	
			1,1,2-trichloroethane	μg/L	0.5	<0.5	0	200	
			1,3-dichloropropane	μg/L	0.5	<0.5	0	200	
			Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	0.0061419442	200	
			1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	0	200	
			cis-1,4-dichloro-2-butene		1	<0.5	0.0210918454	200	
				μg/L					
			1,1,2,2-tetrachloroethane	μg/L	0.5	< 0.5	0	200	
			1,2,3-trichloropropane	µg/L	0.5	<0.5	0.0122556134	200	
			trans-1,4-dichloro-2-butene	µg/L	1	<1	0	200	
			1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	0	200	
			Hexachlorobutadiene	µg/L	0.5	<0.5	0.0610972628	200	
		Halogenated	Chlorobenzene	µg/L	0.5	<0.5	0	200	
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	0.0350624970	200	
			2-chlorotoluene	µg/L	0.5	<0.5	0	200	
			4-chlorotoluene	µg/L	0.5	<0.5	0	200	
			1,3-dichlorobenzene	µg/L	0.5	<0.5	0.0054504873	200	
				μg/L	0.3	<0.3	0.0050364319	200	
			1,4-dichlorobenzene						
			1,4-dichlorobenzene 1,2-dichlorobenzene		0.5	<0.5	0	200	
			1,2-dichlorobenzene	μg/L					
			1,2-dichlorobenzene 1,2,4-trichlorobenzene	μg/L μg/L	0.5	<0.5	0.0053307009	200	
		Monocyclic	1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene	μg/L μg/L μg/L	0.5 0.5	<0.5 <0.5	0.0053307009 0.0018648673	200 200	
		Monocyclic	1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene Benzene	μg/L μg/L μg/L μg/L	0.5 0.5 0.5	<0.5 <0.5 <0.5	0.0053307009 0.0018648673 0.0614259717	200 200 200	
		Monocyclic Aromatic	1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene Benzene Toluene	µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5	0.0053307009 0.0018648673 0.0614259717 0.0540255141	200 200 200 200	
			1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene Benzene Toluene Ethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0.0053307009 0.0018648673 0.0614259717 0.0540255141 0.0646768498	200 200 200 200 200	
			1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 1	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1	0.0053307009 0.0018648673 0.0614259717 0.0540255141 0.0646768498 0.1909753063	200 200 200 200 200 200 200	
			1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene Benzene Toluene Ethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0.0053307009 0.0018648673 0.0614259717 0.0540255141 0.0646768498	200 200 200 200 200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE210059.002	LB206946.020	Monocyclic	n-propylbenzene	µg/L	0.5	<0.5	0.0020929438	200	0
32210000.002	LD200340.020	Aromatic	1,3,5-trimethylbenzene	μg/L	0.5	<0.5	0.0051065480	200	0
		Alomatic	tert-butylbenzene	μg/L	0.5	<0.5	0	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	0.0042150657	200	0
			sec-butylbenzene	μg/L	0.5	<0.5	0.0022628507	200	0
			p-isopropyltoluene	μg/L	0.5	<0.5	0.0022028307	200	0
			n-butylbenzene	μg/L	0.5	<0.5	0.0032313413	200	0
		Nitrogenous	Acrylonitrile	μg/L	0.5	<0.5	0.0854275938	200	0
					10	<0.5	0.1793931188	200	0
		Oxygenated	Acetone (2-propanone)	μg/L					0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	0.0209799632	200	
			Vinyl acetate	µg/L	10	<10	0	200	0
			MEK (2-butanone)	µg/L	10	<10	0	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	<5	0	200	0
			2-hexanone (MBK)	µg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.1169422246	200	0
		Sulphonated	Carbon disulfide	µg/L	2	<2	0.0439439390	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.6	10.0247230801	30	5
			d8-toluene (Surrogate)	μg/L	-	10.1	10.0243780588	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	10.1	9.9569713544	30	2
		Trihalomethan	Chloroform (THM)	µg/L	0.5	<0.5	0	200	0
		es	Bromodichloromethane (THM)	µg/L	0.5	<0.5	0.0043281142	200	0
			Dibromochloromethane (THM)	μg/L	0.5	<0.5	0.0007275286	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	0	200	0
olatile Petroleum	n Hydrocarbons in Wa	ater					Metho	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE209989.003	LB206946.023		TRH C6-C10	µg/L	50	77	38.9975577536	87	25
			TRH C6-C9	μg/L	40	70	91.0272049808		26
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	_	10.0	9.4084341590	30	6
			d8-toluene (Surrogate)	µg/L	_	9.8	9.5489948744	30	2
			Bromofluorobenzene (Surrogate)	µg/L	-	10.4	9.7077465940	30	7
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0.3365631121	179	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	66	39.7591583115		30
SE210059.002	LB206946.020		TRH C6-C10	μg/L	50	<50	3.0167333955	200	0
2210000.002	202000 10:020		TRH C6-C9	μg/L	40	<40	1.4964179142	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.6	10.0247230801	30	5
		Sunoyates							
			d8-toluene (Surrogate)						
			d8-toluene (Surrogate)	μg/L	-	10.1	10.0243780588		1
		VPH F Bands	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	μg/L μg/L μg/L	- 0.5	10.1 10.1 <0.5	10.0243780588 9.9569713544 0.0614259717	30 30 200	1 2 0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB206800.002		Naphthalene	μg/L	0.1	30	40	60 - 140	75
		Acenaphthylene	μg/L	0.1	35	40	60 - 140	88
		Acenaphthene	µg/L	0.1	39	40	60 - 140	99
		Phenanthrene	µg/L	0.1	40	40	60 - 140	99
		Anthracene	µg/L	0.1	38	40	60 - 140	94
		Fluoranthene	μg/L	0.1	40	40	60 - 140	100
		Pyrene	μg/L	0.1	41	40	60 - 140	103
		Benzo(a)pyrene	μg/L	0.1	39	40	60 - 140	98
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.4	0.5	40 - 130	76
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	76
		d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	84
Total Phenolics in \	Nater					N	Nethod: ME-(A	U)-[ENV]AN28
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
1 8206971 002		Total Phonois	mc/l	0.01	0.24	0.25	90 120	05

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB206871.002	Total Phenols	mg/L	0.01	0.24	0.25	80 - 120	95

	olved) in Water by	ICPMS				N	Nethod: ME-(A	U)-[ENV]AN3
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB206783.002		Arsenic, As	μg/L	1	17	20	80 - 120	85
		Cadmium, Cd	μg/L	0.1	19	20	80 - 120	97
		Chromium, Cr	μg/L	1	20	20	80 - 120	101
		Copper, Cu	μg/L	1	21	20	80 - 120	103
		Lead, Pb	μg/L	1	20	20	80 - 120	99
		Nickel, Ni	μg/L	1	20	20	80 - 120	98
		Zinc, Zn	μg/L	5	21	20	80 - 120	107
RH (Total Recove	arable Hydrocarbo	ns) in Water				N	/lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB206800.002		TRH C10-C14	μg/L	50	1100	1200	60 - 140	89
		TRH C15-C28	μg/L	200	1300	1200	60 - 140	108
		TRH C29-C36	μg/L	200	1200	1200	60 - 140	97
	TRH F Bands	TRH >C10-C16	μg/L	60	1200	1200	60 - 140	97
		TRH >C16-C34 (F3)	μg/L	500	1500	1200	60 - 140	121
		7011-004-040 (54)		500	500			
		TRH >C34-C40 (F4)	µg/L	500	<500	600	60 - 140	82
/OC's in Soil		IKH >U34-U4U (F4)	μg/L	500	<500		60 - 140 /ethod: ME-(A	-
		Parameter	μg/L Units	LOR	Result			-
Sample Number	Monocyclic					N	Nethod: ME-(A	U)-[ENV]AN
Sample Number	Monocyclic Aromatic	Parameter	Units	LOR	Result	A Expected	/lethod: ME-(A Criteria %	U)-[ENV]AN Recovery
Sample Number	-	Parameter Benzene	Units mg/kg	LOR 0.1	Result 4.1	Expected 5	Aethod: ME-(A Criteria % 60 - 140	U)-[ENV]AN4 Recovery 82
Sample Number	-	Parameter Benzene Toluene	Units mg/kg mg/kg	LOR 0.1 0.1	Result 4.1 4.0	Expected 5 5	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 82 81
Sample Number	-	Parameter Benzene Toluene Ethylbenzene	Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	Result 4.1 4.0 4.2	Expected 5 5 5 5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 82 81 84
Sample Number	-	Parameter Benzene Toluene Ethylbenzene m/p-xylene	Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2	Result 4.1 4.0 4.2 8.3	Expected 5 5 5 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 82 81 84 83
Sample Number	Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1	Result 4.1 4.0 4.2 8.3 4.2	Expected 5 5 5 10 5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 82 81 84 83 84 83
Sample Number	Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1 -	Result 4.1 4.0 4.2 8.3 4.2 9.7	Expected 5 5 5 10 5 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130	U)-[ENV]AN Recovery 82 81 84 83 84 97
Sample Number LB206842.002	Aromatic	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1 -	Result 4.1 4.0 4.2 8.3 4.2 9.7 9.6	Expected 5 5 5 10 5 10 10 10 10 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	U)-[ENV]AN/ Recovery 82 81 84 83 84 97 96 80
Sample Number LB206842.002 /OCs in Water	Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1 -	Result 4.1 4.0 4.2 8.3 4.2 9.7 9.6	Expected 5 5 5 10 5 10 10 10 10 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130	U)-[ENV]AN/ Recovery 82 81 84 83 84 97 96 80 U)-[ENV]AN/
Sample Number LB206842.002 / <mark>OCs in Water</mark> Sample Number	Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1 -	Result 4.1 4.0 4.2 8.3 4.2 9.7 9.6 8.0	K Expected 5 5 5 10 5 10 10 10 10 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130	U)-[ENV]AN/ Recovery 82 81 84 83 84 97 96 80
VOC's in Soil Sample Number LB206842.002 VOCs in Water Sample Number LB206946.002	Aromatic Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.2 0.1 - - - LOR	Result 4.1 4.0 4.2 8.3 4.2 9.7 9.6 8.0	Expected 5 5 10 5 10 10 10 20 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Aethod: ME-(A Criteria %	U)-[ENV]AN/ Recovery 82 81 84 83 84 97 96 80 U)-[ENV]AN/ Recovery
Sample Number LB206842.002 / <mark>OCs in Water</mark> Sample Number	Aromatic Surrogates Halogenated	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L	LOR 0.1 0.1 0.2 0.1 - - - LOR 0.5	Result 4.1 4.0 4.2 8.3 4.2 9.7 9.6 8.0 Result 51	Expected 5 5 10 5 10 10 10 10 10 8 Expected 45.45	Acthod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Xethod: ME-(A Criteria % 60 - 140	U)-[ENV]AN Recovery 82 81 84 83 84 97 96 80 U)-[ENV]AN Recovery 111
Sample Number LB206842.002 OCs in Water Sample Number	Aromatic Surrogates Halogenated	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethane 1,2-dichloroethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L	LOR 0.1 0.1 0.1 0.2 0.1 - - LOR 0.5 0.5	Result 4.1 4.0 4.2 8.3 4.2 9.7 9.6 8.0 Result 51 53	Expected 5 5 10 5 10 10 10 10 10 Expected 45.45 45.45	Acthod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Acthod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 82 81 84 83 84 97 96 80 U)-[ENV]AN Recovery 111 116

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

0.5

0.5

1

0.5

0.5

49

50

100

50

10.8

10.2

9.7

57

45.45

45.45

90.9

45.45

10

10

10

45.45

60 - 140

60 - 140

60 - 140

60 - 140

60 - 140

70 - 130

70 - 130

60 - 140

Aromatic

Surrogates

Trihalomethan

Toluene

Ethylbenzene

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

d8-toluene (Surrogate)

Chloroform (THM)

m/p-xylene

o-xylene

109

110

110

110

108

102

97

125

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum I	-lydrocarbons in V	Vater				N	Method: ME-(AU)-[ENV]A					
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %				
LB206946.002		TRH C6-C10	μg/L	50	870	946.63	60 - 140	91				
52000+0.002		TRH C6-C9	μg/L	40	740	818.71	60 - 140	90				
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.8	10	60 - 140	108				
		d8-toluene (Surrogate)	μg/L	-	10.2	10	70 - 130	102				
		Bromofluorobenzene (Surrogate)	μg/L	-	9.7	10	70 - 130	97				
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	560	639.67	60 - 140	88				

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN318

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water			Met	hod: ME-(AU)-	ENVJAN311	I (Perth)/AN312
QC Sample Sample Number Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209881.001 LB206793.004 Mercury	mg/L	0.0001	0.0080	<0.0001	0.008	100

Total Phenolics in Water

Total Phenolics in	Water					Met	hod: ME-(Al	J)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210032.001	LB206871.004	Total Phenols	mg/L	0.01	0.20	<0.05	0.25	78

ce Metals (Dissolved) in Water by ICPMS	Trace Metals

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209881.001	LB206783.004	Arsenic, As	μg/L	1	21	1	20	99
		Cadmium, Cd	μg/L	0.1	21	<0.1	20	104
		Chromium, Cr	μg/L	1	21	1	20	100
		Copper, Cu	μg/L	1	21	2	20	95
		Lead, Pb	μg/L	1	20	<1	20	100
		Nickel, Ni	μg/L	1	19	<1	20	93
		Zinc, Zn	μg/L	5	22	<5	20	101

VOC's in Soil	VOC's in Soil Method: ME-(AU)-[ENV]AI								J)-[ENV]AN433
QC Sample	Sample Numbe	ər	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209951.002	LB206842.004	Monocyclic	Benzene	mg/kg	0.1	3.9	<0.1	5	78
		Aromatic	Toluene	mg/kg	0.1	4.0	<0.1	5	79
			Ethylbenzene	mg/kg	0.1	4.1	<0.1	5	81
			m/p-xylene	mg/kg	0.2	8.5	0.4	10	81
			o-xylene	mg/kg	0.1	4.3	0.2	5	81
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.4	8.7	10	94
			d8-toluene (Surrogate)	mg/kg	-	9.3	8.8	10	93
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.7	9.6	10	77
		Totals	Total Xylenes	mg/kg	0.3	13	0.7	-	-
			Total BTEX	mg/kg	0.6	25	0.7	-	-

VOCs in Water Method: ME-(AU)-[ENV								
QC Sample	Sample Number	r	Parameter	Units	LOR	Original	Spike	Recovery%
SE209933.005	LB206946.024	Monocyclic	Benzene	μg/L	0.5	0	45.45	109
		Aromatic	Toluene	µg/L	0.5	0.01828695835	45.45	107
			Ethylbenzene	µg/L	0.5	0.01213159404	45.45	109
			m/p-xylene	µg/L	1	0.05013007570	90.9	108
			o-xylene	µg/L	0.5	0.01133498619	45.45	108
		Polycyclic	Naphthalene	µg/L	0.5	0.03299045158	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.83330468496	-	101
			d8-toluene (Surrogate)	µg/L	-	10.30846917922	-	100
			Bromofluorobenzene (Surrogate)	µg/L	-	10.21652618213	-	97

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)							[ENV]AN433		
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE209933.005	LB206946.024		TRH C6-C10	µg/L	50	1.97156962912	946.63	96	
			TRH C6-C9	µg/L	40	0.93136483096	818.71	97	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.83330468496	-	101	
			d8-toluene (Surrogate)	µg/L	-	10.30846917922	-	100	
			Bromofluorobenzene (Surrogate)	µg/L	-	10.21652618213	-	97	
		VPH F	Benzene (F0)	µg/L	0.5	0	-	-	
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	1.97156962912	639.67	97	

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.